38 research outputs found

    Hemispheric Language Asymmetry in First Episode Psychosis and Schizotypy: The Role of Cannabis Consumption and Cognitive Disorganization

    Get PDF
    Cannabis use has been related to an elevated psychosis risk and attenuated cognitive functioning. Cannabis-related cognitive impairments are also observed in populations along the psychosis dimension. We here investigated whether a potential behavioral marker of the psychosis dimension (attenuated functional hemispheric asymmetry) is even further attenuated in individuals using cannabis (CU) vs those not using cannabis (nCU). We tested 29 patients with first-episode psychosis (FEP; 11 CU) and 90 healthy controls (38 CU) on lateralized lexical decisions assessing left-hemisphere language dominance. In patients, psychotic symptoms were assessed by Positive & Negative Symptom Scale (PANSS). In controls, self-reported schizotypy was assessed (The Oxford-Liverpool Inventory of Feelings and Experiences: O-LIFE). Results indicated that nCU FEP patients had a relative reduced hemispheric asymmetry, as did controls with increasing cognitive disorganization (CogDis) scores, in particular when belonging to the group of nCU controls. Positive, disorganized and negative PANSS scores in patients and negative and positive schizotypy in controls were unrelated to hemispheric asymmetry. These findings suggest that cannabis use potentially balances rather than exacerbates uncommon hemispheric laterality patterns. Moreover, in healthy populations, the potential stabilization of typical hemispheric asymmetry in CU might be most relevant to individuals with elevated CogDis. We discuss the potential beneficial and harmful effects of cannabis use along the psychosis dimension together with propositions for future studies that should account for the mediating role of additional substances (eg nicotine), cannabis composition (eg cannabidiol content), and individual differences (eg physical health, or absence of significant polysubstance use

    GLP-1-mediated delivery of tesaglitazar improves obesity and glucose metabolism in male mice

    Get PDF
    Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography–mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance

    High LRRK2 Levels Fail to Induce or Exacerbate Neuronal Alpha-Synucleinopathy in Mouse Brain

    Get PDF
    The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson’s disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy

    HAND2 is a novel obesity-linked adipogenic transcription factor regulated by glucocorticoid signalling

    Get PDF
    Aims/hypothesis Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis.MethodsHuman white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests.Results We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression.Conclusions/interpretation In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice.Data availability Array data have been submitted to the GEO database at NCBI (GSE148699).</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Alcohol and relatively pure cannabis use, but not schizotypy, are associated with cognitive attenuations

    No full text
    Elevated schizotypy relates to similar cognitive attenuations as seen in psychosis and cannabis/polydrug use. Also, in schizotypal populations cannabis and polydrug (including licit drug) use are enhanced. These cognitive attenuations may therefore either be a behavioural marker of psychotic (-like) symptoms or the consequence of an enhanced drug use in schizotypal populations. To elucidate this, we investigated the link between cognitive attenuation and cannabis use in largely pure cannabis users (35 CU) and non-using controls (48 nCU), accounting for the potential additional influence of both schizotypy and licit drug use (alcohol, nicotine). Cognitive attenuations commonly seen in psychosis were associated with cannabis and alcohol use, but not schizotypy. Future studies should therefore consider i) non-excessive licit substance use (e.g. alcohol) in studies investigating the effect of cannabis use on cognition and ii) both enhanced illicit and licit substance use in studies investigating cognition in schizotypal populations
    corecore