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Abstract
Aims/hypothesis Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is
associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and
healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing
adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart
and neural crest derivatives-expressed 2 (HAND2) in adipogenesis.
Methods Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individ-
uals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human
multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation
in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or
tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative
PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing
(RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a
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conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre)
and performed a large panel of metabolic tests.
Results We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was
necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was
correlated to BMI. TheHAND2 genewas enriched inwhite adipocytes comparedwith brown, induced early in differentiation and
responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in
hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing
that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters
indirectly regulated by the GR–HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in
hMADS and primary mouse adipocytes. However, a conditional adipocyteHand2 deletionmouse model using Cre under control
of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at
stages prior to Adipoq expression.
Conclusions/interpretation In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor,
highlighting new mechanisms of GR-dependent adipogenesis in humans and mice.
Data availability Array data have been submitted to the GEO database at NCBI (GSE148699).

Keywords Adipocytes .Dexamethasone .Differentiation .Glucocorticoidreceptor .HAND2 .hMADS .Humanadipose tissue .

Mesenchymal stem cells . Obesity . Transcription factor

Abbreviations
BAT Brown adipose tissue
DEX Dexamethasone
DIO Diet-induced obesity
GC Glucocorticoid
GR Glucocorticoid receptor
gWAT Gonadal white adipose tissue
HAND2 Heart and neural crest derivatives-expressed 2
HFD High-fat diet
hMADS Human multipotent adipose-derived stem (cell)

hSVF Human stromal vascular fraction
mSVF Mouse stromal vascular fraction
PPARγ Peroxisome proliferator-activated receptor γ
qPCR Quantitative PCR
RNASeq RNA sequencing
scWAT Subcutaneous white adipose tissue
SVF Stromal vascular fraction
visWAT Visceral white adipose tissue
WAT White adipose tissue
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Introduction

Adipocytes are specialised cells that have a variety of func-
tions including nutrient buffering, endocrine regulation and
thermogenesis. Principally, there are two types of adipocytes:
first, white adipocytes, able to store and release lipids and
secrete adipokines and, second, thermogenic adipocytes
(brown and beige), which additionally dissipate chemical
energy from nutrients as heat [1]. Obesity, the excess accumu-
lation of white adipose tissue (WAT), is characterised by
adipocyte dysfunction and metabolic imbalance. Enhancing
adipocyte health or increasing the number of functional adipo-
cytes has beneficial effects on systemic metabolism.

Adipogenesis is a complex process regulated by the interplay
of transcription factors, metabolites and hormonal cues. The
commitment of mesenchymal stem cells to becoming pre-
adipocytes and adipogenesis occur in waves of transcriptional
programs. Genes involved in development, for example those
encoding bonemorphogenic proteins,Wnt or hedgehog proteins,
play a critical role during the commitment of progenitor cells to
the adipocyte lineage [2] while activating peroxisome
proliferator-activated receptor γ (PPARγ), for example by
rosiglitazone, promotes later adipocytes differentiation and
induces a thermogenic phenotype [3].

Glucocorticoids (GCs) are steroid hormones modulating
metabolism [4–6] including adipogenesis, lipolysis, lipogenesis
and thermogenesis [7].However, recent studies have demonstrated
that the glucocorticoid receptor (GR) is not required for the devel-
opment of adipose tissue in mouse models [8–11]. Nevertheless,
the effects of GCs on adipocytes are multifaceted and largely
depend on the metabolic status of the individual. Chronically
elevated levels of GCs, either by pharmacological treatment or in
patients with Cushing’s syndrome, results in partial lipodystrophy
[12]. However, neither the adipose-specific activation of GR by
GCs nor their regulation in obesity are fully understood.

In search of novel adipose-specific mechanisms linked to
human obesity we have previously investigated methylation
and gene expression signatures of visceral WAT (visWAT)
and subcutaneous WAT (scWAT) and found that the transcrip-
tion factor HAND2 (heart and neural crest derivatives-expressed
2) is among the most differentially expressed genes [13].
HAND2 encodes a helix-loop-helix transcription factor that plays
a role in cardiac morphogenesis by binding other helix-loop-
helix proteins including its close relative HAND1 [14]. This
ability of HAND2 to control organ development [15–18] and
cell differentiation led us to hypothesise that HAND2 might be
involved in adipocyte differentiation and function.

Methods

For detailed methods, please refer to the Electronic supple-
mentary material (ESM).

Cell culture and stromal vascular fraction preparationHuman
multipotent adipose-derived stem (hMADS) cells were kindly
provided by E.Z. Amri. hMADS were free of mycoplasma
contamination and cultivated as previously described [19,
20]. Mouse stromal vascular fraction (SVF; mSVF) was
isolated from brown adipose tissue (BAT), scWAT, and
visWAT, and differentiated into adipocytes [21]. Human
SVF (hSVF) was isolated from scWAT, collected from
healthy patients (abdominoplasty) and differentiated by
administering the same adipogenic cocktail as for hMADS
[21]. The study was approved by the University of Ulm
Ethics Committee (vote no. 300/16) and all donors gave writ-
ten informed consent.

Gene expression and functional analysis in vitro HAND2 and
NR3C1 mRNA was silenced in hSVF, hMADS and mSVF
using 20 nmol/l siRNA (SMARTpool ON-TARGETplus
siRNA Horizon Discovery, UK), cells were collected 48 h
after transfection. To overexpress Hand2 we infected mSVF
or 3T3-L1 cells with the pcDNA-3XFlag-Hand2 vector [15]
and the pENTR-CMV-MCS-TKpA as control using TransIT-
X2 Dynamic Delivery System (Mirus, USA, MIR 6003).
Cells were collected 72 h after infection. Chemical activation
and inhibition of GR were performed by 12 h treatment with
respectively 1 μmol/l dexamethasone (DEX) (Merck,
Germany D4902) and/or 2 μmol/l RU486 (475838, Merck).
Transcriptional analysis was performed using SYBR-based
quantitative PCR (qPCR) (primers listed in ESM Table 1),
microarray (Human Clariom S arrays, Thermo Fisher
Scientific, Germany) and RNAseq (performed by Novogene,
UK). Protein levels of Akt, pAkt and β-actin (Cell Signaling,
Germany #9272, #4051, #4970, respectively, 1/1000) were
quantified by western blot [22]. Oil Red O staining, glycerol
accumulation and glucose uptake was measured. ChIP qPCR
was performed as previously described [23].

Mouse experiments All animal studies were conducted in
accordance with German animal welfare legislation and proto-
cols were approved by the state Ethics Committee and
Government of Upper Bavar ia (nos . ROB-55.2-
2532.Vet_02-16-117; ROB-55.2-2532.Vet_02-17-125;
ROB-55.2-2532.Vet_02-15-164). All mice were group-
housed and maintained in a climate-controlled environment
at 22°C with a 12 h dark–light cycle under specific
pathogen-free conditions in the animal facility of the
Helmholtz Center Munich. db/db mice (JAX mouse strain)
were purchased from Charles River (https://www.criver.
com/products-services/find-model/jax-dbdb-mice?region=
23 ) Ad ipocy t e - spe c i f i c Hand2 knockou t mice
(Hand2AdipoqCre) were generated by crossing AdipoqCRE mice
(Jackson laboratory, stock number 028020; C57BL/6J,
https://www.jax.org/strain/028020) with Hand2flox/flox mice
(NMRI strain), kindly provided by R. Zeller [24].
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Hand2AdipoqCre (CRE+) and wild-type littermates (CRE−)
were used for all experiments. Animals were fed a high-fat
diet (HFD) 60% energy from fat (Research Diets, New
Brunswick, NJ, USA D12492) ad libitum from the age of 6
weeks for 12 weeks, after which glucose and insulin tolerance
tests were performed. Briefly, animals were fasted and subse-
quently injected intraperitoneally with glucose at 2 g/kg or
insulin 0.8 U/kg. Body mass composition measurement,
necropsy, and haematoxylin/eosin (HE) staining were
performed. Histological staining with HE was performed on
3 μm thick sections of BAT, scWAT and gWAT.
Intraperitoneal injection of DEX (1 mg/kg) (Sigma,
Germany #D9184-5G) was performed on wild-type C57BL/
6J (JAX mouse strain) (Charles River, https://www.criver.
com/products-services/find-model/jax-c57bl6j-mice) for 6 h,
2 days or 2 weeks and Hand2AdipoqCre for 6 h. Indirect
calor imetry, including energy expendi ture, food
consumption, oxygen consumption and locomotor activity,
was measured for Hand2AdipoqCre using metabolic cages
(TSE PhenoMaster cages TSE Systems, Bad Homburg,
Germany). GRflox/flox and GRERT2Cre (on a C57BL/6 back-
ground) and Hand23XFlag (on an NMRI background) mice
were generated as previously described [15, 25]. Hand2
expression was analysed using SYBR-based qPCR (Thermo
Fisher, Germany #A25741) (primers listed in ESM Table 1).

Human studies The study protocol relating to human BAT
was approved by the Ethics Committee of the Hospital
District of Southwestern Finland, and participants provided
written informed consent following the committee's instruc-
tions. The study was conducted according to the principles of
the Declaration of Helsinki. Human BAT was collected from
fluorodeoxyglucose F18-positron emission tomography-
positive scan areas in the supraclavicular location and
scWAT was taken from the same incision. The studies refer-
ring to the human cohort 1 and 2 were approved by the Ethics
Committee of the University of Leipzig (approval no: 159-12-
21052012) and performed in accordance to the declaration of
Helsinki. All participants gave written informed consent
before taking part in the study. Human cohort 1 refers to
human scWAT versus visWAT samples collected in the
context of a cross-sectional study of 318 individuals (249
women, 69 men; BMI range: 21.9–97.3 kg/m2, age range:
19–75 years). An additional 13 individuals receiving DEX
treatment for chronic inflammatory diseases were compared
to BMI-matched (35–67 kg/m2) individuals from cohort 1. In
cohort 2, 96 individuals were selected from the Leipzig
Obesity Biobank to define age- and sex-matched groups of
healthy lean individuals (n = 32; mean BMI: 23.4 ± 1.5 kg/
m2 mean age 43.6 ± 7.1 years, 23 female, 9 male participants),
individuals with metabolically healthy obesity (n = 32; mean
BMI: 45.9 ± 6.8 kg/m2 mean age 42.6 ± 9.3 years, 23 female,
9 male participants) further BMI-matched to 32 individuals

with obesity and type 2 diabetes (mean BMI: 45.3 ± 4.7 kg/
m2 mean age 42.7 ± 6.7 years, 25 female, 7 male participants).

HAND2 mRNA expression was measured using SYBR-
based qPCR (primers listed in ESM Table 1).

StatisticsData presented as bar charts were expressed as mean
± SEM. Data presented as box and whisker plots were shown
as median with upper and lower quartile ± maximum and
minimum points. Two-tailed, unpaired t test was used when
comparing two conditions. One-way ANOVA and two-way
ANOVA with Tukey test were used when comparing three or
more groups, as reported in the figure legends. Analysis was
performed using GraphPad Prism. A p value <0.05 was
considered significant as indicated by asterisks in the figure
legends. Mouse experiments involving Hand2AdipoqCre were
performed three times independently and pooled. Mice were
excluded for poor body condition or if they died before the
end of the experiment. For the quantification of HAND2 in
control patients versus DEX-treated patients, only patients in
the same range of BMI were considered, and outliers were
excluded using the ROUT test Q1% from GraphPad Prism.

Results

Adipose HAND2 is correlated to obesity in mice and humans
In order to investigate the importance of HAND2 in adipose
tissue biology, we first determined its gene expression in
different adipose depots obtained from groups of non-obese,
obese and diabetic individuals over a broad range of BMI.
HAND2mRNA levels were higher in visWAT compared with
scWAT (cohort 1) (ESM Fig. 1a) and were lower in obese or
diabetic participants compared with lean participants, espe-
cially in the visWAT (cohort 1) (Fig. 1a). We confirmed these
findings in a second independent cohort (cohort 2) consisting
of an equal number of lean, obese and diabetic participants
(ESM Fig. 1b). ScWAT depots showed substantially higher
HAND2 expression than human BAT (Fig. 1b). Intriguingly,
HAND2 expression in visWAT but not in scWAT was
inversely correlated with BMI in these patients (Fig. 1c,d).
However, HAND2 in both tissues was correlated with body
weight in both cohorts (ESM Table 2). In line with these
human data, in mice Hand2 expression was, as expected,
highest in the heart followed by liver and gonadal WAT
(gWAT), with lower expression in scWAT, BAT and gastroc-
nemius muscle (ESM Fig. 1c). Moreover, gWAT Hand2 was
significantly lower in mouse models of obesity, including
HFD-induced obesity (referred to here as diet-induced obesity
[DIO]) as well as genetically obese, leptin receptor-deficient
db/dbmice (Fig. 1e,f), and also inversely correlated with body
weight (Fig. 1g,h). These data demonstrate that HAND2 was
prominently expressed in gWAT and correlated with obesity
in both mice and humans.
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HAND2 is expressed in adipocytes and is induced early in
adipogenesis The cellular composition of adipose tissue is
heterogenous and changes dynamically in obesity. To analyse
the origin of HAND2 expression in more detail, we next
measuredHAND2mRNA levels in fractionated adipose tissue
from mouse and human samples ex vivo. Mouse Hand2 was
poorly expressed in the macrophage fraction and its levels

were not significantly higher in mSVF compared with the
adipocyte fraction (p = 0.2) (Fig. 2a,b) while in human
adipose tissue, HAND2 levels were higher in the hSVF
compared with the adipocyte fraction (Fig. 2c). These findings
indicate that HAND2 was predominantly expressed in pre-
adipocytes and adipocytes. To further evaluate this concept,
we employed in vitro adipocyte models. Differentiated
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Fig. 1 White adipocyte HAND2
is correlated to obesity in mice
and humans. (a, b) HAND2
expression in visWAT vs scWAT
from lean, obese or diabetic
participants (n = 318 participants;
cohort 1) (a), and in human
scWAT vs BAT (n = 7
individuals) (b). (c, d) HAND2
expression correlated with BMI in
visWAT (c) and scWAT (d) (n =
318 participants; cohort 1). (e, f)
Hand2 expression in wild-type vs
DIO mice (n = 10 mice) (e) and in
WT vs db/db mice (n = 5 mice)
(f). (g, h) Hand2 expression
correlated with body weight in
mouse gWAT (g) and scWAT (h)
(n = 54 mice). Data are presented
as arbitrary units representing
copy number of HAND2
normalised to HPRT1 (a, c, d) or
Tbp (g, h); as fold change
compared to scWAT (b); or as
fold change compared to
gWAT/WT (e, f). Statistics: one-
way ANOVAwith Tukey test (a),
two-tailed paired t test (b),
correlation (c, d, g, h), two-way
ANOVA with Tukey test (e, f).
Data are presented as median with
upper and lower quartile ±
maximum and minimum (a, b, e,
f). Statistical significance is
indicated by *p < 0.05. A.U.,
arbitrary units; T2D, type 2
diabetes; WT, wild-type

Diabetologia



adipocytes derived from the mSVF of distinct anatomical
locations mirrored the in vivo Hand2 mRNA expression
pattern with highest levels in adipocytes from gWAT

compared with those isolated from scWAT or from BAT
(Fig. 2d). In light of the established role of HAND2 in devel-
opment and its high expression in SVF, we investigated
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Fig. 2 HAND2 is induced in early differentiation and expressed in both
pre-adipocytes and mature adipocytes. (a–c) Hand2 expression in mSVF
vs macrophages (n = 6 replicates) (a), vs adipocyte fraction (AF n = 12
replicates, SVF n = 9 replicates) (b) and in human AF vs hSVF (n = 7
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Statistical significance is indicated by *p < 0.05. AF, adipocyte fraction;
D, day; Dif, differentiated; Macro, macrophages; Thermo, thermogenic;
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adipose Hand2 gene expression in the postnatal phase, 1 day,
2 weeks and 10 weeks after birth. Hand2 levels were the
highest in scWAT and BAT of 1-day-old pups and after 2
weeks in the gWAT, since this depot develops later than

scWAT and BAT (ESM Fig. 2a,f,k). We also analysed the
expression of Nr3c1, Pref1 (also known as Dlk1), Plin1 and
Adipoq as markers of different stages of adipocyte differenti-
ation (ESM Fig. 2b–e, g–j, l–o). Interestingly, chronic
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rosiglitazone treatment, which induces thermogenic adipocyte
differentiation [3], did not affect Hand2 expression in mouse
cells (Fig. 2d). In adipocytes differentiated from hSVF,
HAND2 was higher in the classical white compared with the

rosiglitazone-induced thermogenic differentiation regimen.
UCP1 expression was higher in thermogenic adipocytes, as
expected (Fig. 2e,f). The hMADS cell model has been
described as a reliable tool for studying the metabolism of
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white and thermogenic adipocytes [19, 20]. In hMADS cells,
HAND2 was also higher in the white compared with the ther-
mogenic differentiation regimen (Fig. 2g,h). Furthermore, we
confirmed thatHAND2mRNA was induced early in hMADS
adipogenesis (Fig. 2i). Interestingly, fully differentiated
hMADS adipocytes showed a slightly higher expression of
HAND2 than pre-adipocytes (Fig. 2k).We confirmed the early
induction of Hand2 in mSVF (Fig. 2m) but could not find
major change in Hand2 gene expression between undifferen-
tiated and differentiated cells (Fig. 2o). PLIN1 was used as
marker for mature adipocytes and showed higher level in
differentiated adipocytes (Fig. 2j,l,n,p). On the contrary,
PREF1, a marker of the pre-adipocyte stage was not expressed
in hMADS but showed higher levels in undifferentiated
mSVF (ESM Fig. 2p,q). In summary, these data illustrate that
HAND2 is highly and selectively expressed in white adipo-
cytes with a spike of expression during the commitment phase
towards the adipocyte lineage.

Loss of HAND2 impairs adipogenesisAsHAND2was induced
in early adipogenesis in human and mouse adipocyte models,
we hypothesised that HAND2 might be an important compo-
nent of the adipogenesis program. To test this hypothesis, we
silenced HAND2 gene expression in hMADS cells before the
induction of differentiation (Fig. 3a). HAND2-specific siRNA
treatment led to diminished levels of HAND2mRNA at day 0
and day 2 compared with control siRNA-treated cells (Fig.
3b). Transcriptomic analysis at day 2 revealed that silencing
of HAND2 was associated with a marked downregulation of
the expression of prominent mature adipocyte genes, includ-
ing ADIPOQ, APOE, LIPE and PLIN1 (Fig. 3c). Furthermore,
key adipogenic transcription factors such as PPARG, CEBPA
and PPARGC1B were expressed at lower levels (Fig. 3d–f),
indicating that HAND2 was required for proper execution of
adipogenesis. Ingenuity pathway analysis confirmed that
silencing of HAND2 led to a broad dysregulation of the tran-
scriptional programs required for adipocyte biology (ESM
Fig. 3a,b). Interestingly, among the in silico predicted
inhibited upstream regulators were NR3C1 (encoding the

GR), KLF15 and PPARG, all well-known master regulators
of adipogenesis. In contrast, upstream regulators associated
with proliferation such as FGF2, TGFB (also known as
TGFB1) or MIF were predicted to be activated (ESM Fig.
3c). The aberrant execution of the transcriptional adipogenesis
program was also mirrored in the overall cellular phenotype,
as early HAND2 silencing completely abolished the differen-
tiation of hMADS cells into mature adipocytes as demonstrat-
ed by the lack of lipid droplet formation (Fig. 3g,h).
Moreover, in mSVF-derived pre-adipocytes, early silencing
ofHand2 led to lower lipid droplet formation while the induc-
tion of key adipogenic genes, including Plin1 and Pparg,
remained largely intact (Fig. 3i–m). Taken together, our
results indicate that HAND2 was required for adequate differ-
entiation in human adipose-derived mesenchymal stem cells
and modulated differentiation in mouse pre-adipocytes.

Hand2 in mature adipocytes is dispensable in vivo In order to
assess whether HAND2 might also be required for adipocyte
function and systemic metabolic control in vivo, we created a
conditional Cre-loxP mouse model for adipocyte-specific
deletion of Hand2. We used an established transgenic mouse
model, in which critical parts of the Hand2 gene are flanked
by loxP sites [24] and crossed this model with mice carrying
Cre driven by the Adipoq promoter [26], which led to genetic
delet ion of Hand2 in mature adipocytes in vivo
(Hand2AdipoqCre) (ESM Fig. 4a,b). As adipocyte function is
an important pillar of lipid homeostasis during fasting and the
postprandial phase, we first tested plasma triacylglycerol and
non-esterified fatty acid levels in chow-fed male and female
mice. Fasted and refed plasma lipid levels remained largely
unchanged between Hand2AdipoqCre and wild-type littermate
controls (ESM Fig. 4c–f). These observations were supported
with human metabolic data showing no correlation between
HAND2 expression in WAT and plasma triacylglycerol levels
(ESM Table 2). In addition, adipocytes are critically important
for sustaining metabolic control in states of caloric excess, so
we next tested the role of adipocyte HAND2 in DIO mice.
Both male and female mice were placed on HFD for 12 weeks
to induce weight gain and insulin resistance whereas chow
diet-fedmice were included as controls (Fig. 4a). As expected,
HFD feeding induced markedly higher weight gain compared
with chow diet in both sexes, whereas the absence ofHand2 in
white adipocytes did not have an effect (Fig. 4b,c). During the
study, we performed GTTs after 6 and 12 weeks as well as an
ITT after 12 weeks of the feeding regimen. As expected,
HFD-fed mice displayed markedly lower glucose tolerance
as well as markedly higher insulin resistance relative to
chow-fed controls at both time points, however, we did not
detect any genotype-specific differences (Fig. 4d–i). At the
end of the study, while lean mass remained unchanged across
diets and genotypes, HFD-fed mice displayed markedly
higher adiposity and WAT depot weights than chow-fed

�Fig. 4 Metabolic phenotyping of Hand2AdipoqCre mice fed an HFD. (a)
Hand2AdipoqCre (CRE+) and wild-type (CRE−) littermates, females and
males, were fed an HFD (60%) for 6 or 12 weeks. Several metabolic
variables were measured. (b, c) Body weight gain in females (b) and
males (c). (d–i) GTT in females (d) and males (g) after 6 weeks of
HFD diet; GTT and ITT in females (e, f) and males (h, i) after 12
weeks of HFD diet. (j–s) Final measurement of body composition (j, k,
o, p) and adipose depot weight in females (l–n) and males (q–s). Each
variable has been measured in three cohorts in females (Chow CRE−
n=27 mice, Chow CRE+ n=20 mice, HFD CRE− n=27 mice, HFD
CRE+ n=24 mice) and males (Chow CRE− n=21 mice, Chow CRE+
n=26 mice, HFD CRE− n=25 mice, HFD CRE+ n=23 mice). Statistics:
two-way ANOVA with Tukey test; mean ± SEM (b–s). Statistical
significance is indicated by *p < 0.05
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controls and these differences were independent of sex and
genotype (Fig. 4j–s). A careful analysis of adipose tissue
histology revealed the expected increase in adipocyte diameter
in WAT upon HFD feeding, but overall WAT and BAT were
phenotypically similar when comparing genotypes (ESM Fig.
5a–f). Following up on these in vivo findings, we also
confirmed that HAND2 is dispensable in differentiated
hMADS cells in vitro as silencing of HAND2 has no effect
on lipid release (ESM Fig. 6a), glucose uptake (ESM Fig. 6b)
or expression of key players of metabolic pathways (ESMFig.
6c–m) or on phosphorylation of Akt under insulin stimulation
(ESM Fig. 6n). In summary, while HAND2 was required for
proper adipogenesis in vitro, its silencing in vitro and in vivo
in fully differentiated adipocytes did not affect the response to
insulin stimulation or adipocyte function on glucose transport
and lipolysis.

HAND2 is regulated by GCs via the GR Our results supported
the hypothesis that HAND2 expression levels in adipocytes
were determined early during adipogenesis, and that HAND2
expression was required for differentiation of stem cells into
adipocytes in vitro. Among the most powerful and established
inducers of adipogenesis are insulin, cAMP-raising agents
(e.g. isobutylmethylxanthine [IBMX]), agonists of PPARγ
(e.g. rosiglitazone), and GR agonists, such as DEX. As
HAND2 expression was induced in cell culture upon treat-
ment with this commonly used adipogenic hormone cocktail,
we explored the ability of the individual ingredients to regu-
late HAND2. We found that DEX, but not the other
adipogenic agents, induced HAND2 expression (Fig. 5a).
This induction of HAND2 by DEX was antagonised by RU-
486 treatment in hMADS (Fig. 5b–g) as well as in SVF cells

(Fig. 5h–m) irrespectively of whether it was added before or
after differentiation. A time course of DEX and RU-486 treat-
ment revealed that HAND2 expression peaked after 3 h of
treatment and remained significantly different from control
cells up to at least 24 h (ESM Fig. 7a) NR3C1 and PLIN1
were not affected by HAND2 knockdown (ESM Fig. 7b,c).
Of note, as expected, PLIN1 expression was very low in pre-
adipocytes, and markedly higher in differentiated adipocytes,
and was not significantly affected by pharmacological
manipulation of GR, with the only exception being mature
mSVF Hand2flox/flox (p < 0.05). Pref1 showed higher levels
in undifferentiated mSVF (ESM Fig. 7d,e). Furthermore, in
mice, a single DEX injection led to higher Hand2 expres-
sion in gWAT in females (ESM Fig. 8a,b). However, chron-
ic DEX treatment induced an increase of energy expenditure
in the light phase and a decrease in the dark phase; never-
theless no specif ic phenotype was observed in
Hand2AdipoqCre mice (ESM Fig. 8c,d,g). Other metabolic
variables including activity, food intake, body weight, body
composition and blood glucose concentration were not influ-
enced by the absence of Hand2 in mature adipocytes,
neither at 22°C nor at 30°C thermoneutrality (ESM Fig.
8e,f,h–m). Interestingly, chronic DEX treatment by daily
injections for 2 days or 2 weeks lowered Hand2 levels in
gWAT (ESM Fig. 8n,o). Similar findings were observed in
humans receiving daily DEX treatment for more than a
week for chronic inflammatory diseases. (ESM Fig. 8p).
Congruent with a GR-dependent mechanism, siRNA-
mediated knockdown of NR3C1 in hMADS pre-adipocytes
as well as mature adipocytes (Fig. 6a–d) abolished the effect
of DEX on HAND2. Genetic inactivation of Hand2 in SVF
from gWAT of Hand2flox/flox mice with Cre-encoding
mRNA both in pre-adipocytes and mature adipocytes
prevented Hand2 increase in pre-adipocytes (condition
GFP + DEX vs CRE + DEX p= 0.059) and mature adipo-
cytes (condition GFP + DEX vs CRE + DEX p = 0.11)
under DEX treatment but did not affect GR expression
(Fig. 6e–h). In pre-adipocytes and mature adipocytes isolat-
ed from WAT SVF of Nr3c1flox/flox mice crossed with mice
expressing the global tamoxifen-inducible Cre-ERT2 fusion
protein (GRERT2CRE) [25], we confirmed that GR regulated
Hand2 expression as tamoxifen treatment abrogated the
increase in Hand2 under DEX stimulation (Fig. 6i–l).
Using an RNA interference approach in mSVF we made
similar observations (condition siCtr + DEX vs siHand2 +
DEX p = 0.09) (Fig. 6m–n). Furthermore, in all the condi-
tions described above, as expected, PLIN1 expression was
almost nonexistent in pre-adipocytes compared with adipo-
cytes and remained unaffected by the different treatments
while Pref1 expression was higher in undifferentiated cells
(ESM Fig. 7f–p). Altogether these data support the notion
that HAND2 is regulated by the GC–GR pathway during
adipocyte differentiation.

�Fig. 5 DEX regulates HAND2 expression. (a) HAND2 expression in
hMADS pre-adipocytes. Proliferation media (DMEM 10% serum),
control media (DMEM + F12), differentiation media (DMEM + F12 +
1 μmol/l DEX + 100 nmol/l rosiglitazone + 10 nmol/l insulin + 10 μg/ml
apotransferrin + 0.2 nmol/l T3 + 500 μmol/l IBMX), rosiglitazone
(DMEM + F12 + 100 nmol/l rosiglitazone), DEX (DMEM + F12 + 1
μmol/l DEX), insulin (DMEM+ F12 + 10 nmol/l insulin), apo-transferrin
(DMEM + F12 + 10 μg/ml apotransferrin), T3 (DMEM + F12 + 0.2
nmol/l T3), IBMX (DMEM + F12 + 500 μmol/l IBMX) (n = 3
replicates). (b–g) HAND2, NR3C1 and PLIN1 expression in hMADS
pre-adipocytes (n = 3 replicates) (b–d) and mature adipocytes (n = 3
replicates) (e–g), treated with 2% ethanol, with DEX (1 μmol/l) and/or
RU-486 (2 μmol/l) for 12 h (n = 3 replicates). (h–m) Hand2, Nr3c1 and
Plin1 expression in mSVF pre-adipocytes (n = 3 replicates) (h–j) and
mature adipocytes (n = 3 replicates) (k–m), treated with DEX (1
μmol/l) and/or RU-486 (2 μmol/l) for 12 h. Data are presented as fold
change compared with the condition Ctr med (a), to the condition Ctr (b,
e, h, k). Data are presented as arbitrary units representing copy number
normalised to TBP (c, d, f, g, i, j, l,m). Statistics: one-way ANOVAwith
Tukey test; mean ± SEM. Statistical significance is indicated by *p <
0.05. Apo, apo-transferrin; Ctr, control; Ctr OH, 2% ethanol; Dif,
differentiation; IBMX, isobutylmethylxanthine; med, media; Rosi,
rosiglitazone; RU, RU-486
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Hand2 expression is necessary but insufficient for adipocyte
differentiation We explored whether increasing Hand2
expression was sufficient to compensate for GCs at the begin-
ning of differentiation. To this end, we overexpressed Hand2
using a pcDNA-3XFlag-Hand2 vector 24 h before inducing

the differentiation of 3T3-L1 cells either using a classical
cocktail of induction including DEX (1 μmol/l) or with a
cocktail depleted of DEX. Comparing cells transfected with
the control orHand2 vectors, we did not detect any significant
difference in key differentiation markers, neither 24 h nor 6
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days after induction (ESM Fig. 9a–h, k–q) and lipid accumu-
lation was unchanged (ESM Fig. 9i–j). In conclusion, while
HAND2 is required early in the transition of mesenchymal
cells into the adipocyte lineage, its induction is insufficient
for differentiation and unable to compensate for GC
stimulation.

Gene networks regulated by the GR–HAND2 pathway Our
results indicate that HAND2 was induced by GR and required
for adipocyte differentiation but dispensable in mature adipo-
cytes. Therefore, we set out to understand the transcriptional
networks during early adipogenesis downstream of the GR–
HAND2 pathway. We silenced HAND2 and NR3C1 in
hMADS cells and treated the cells 2 days later with DEX for
12 h and performed RNAseq (Fig. 7a–c). While the tran-
scriptome signature of cells with NR3C1 silencing treated
with DEX clustered together with the control samples without
DEX treatment (Fig. 7d), cells with HAND2 silencing clus-
tered with control treated with DEX, suggesting that HAND2
regulates only a small subset of GR-related genes. Using a
gene set enrichment analysis [27, 28], we determined the tran-
scriptional networks regulated by GC–GR signalling for
benchmarking our dataset. Indeed, we found many confirmed
GC–GR signalling pathways, underlining the reliability of our
dataset (Fig. 7e). Focusing on gene expression levels that were
differentially and commonly regulated by GR and HAND2 as
part of the GR–HAND2 pathway we found four main path-
ways to be regulated: the metapathway biotransformation
phase I and II, including genes from the cytochrome p450
family implicated in the synthesis of cholesterol steroids and
other lipids, the mammalian target of rapamycin (mTOR)
pathway and the large family of class A rhodopsin-like G
protein-coupled receptors (GPCRs) and the signalling path-
way vascular endothelial growth factor (VEGF)A–VEGFR2
(Fig. 7f). We confirmed the regulation of several of these gene
sets in gWAT ofHand2AdipoqCre mice including Efna1, Efna2,
Fmo2 and Cyp2f1 (ESM Fig. 10a). Using WAT SVF from
Hand23XFlag mice or the associated vector pcDNA-3XFlag-

Hand2 to overexpress HAND2 in 3T3-L1 cells, we investi-
gated by ChIP qPCR whether HAND2 was directly binding
putative targets that we selected from our RNASeq data
(Efna2, Clnd1, Rgs3 and Rheb), known targets of GR (Per1
and Gilz [also known as Tsc22d3] or Tbx2 and Hand2 itself,
which were already published to be targets of HAND2 [15].
We did not find evidence that HAND2 was enriched in the
selected binding sites (ESM Fig. 10b–g). In summary, these
data confirm that HAND2 plays an important role very early
in the adipocyte differentiation process and might play an
important role in the execution of the GC–GR program.

Discussion

In this study, we show that HAND2 is a critical factor for early
adipogenesis, regulated by GC–GR signalling and correlated
to body weight and obesity in mice and humans. In hMADS
cells, the earlier we manipulatedHAND2 expression, the more
severe was the effect in interfering with proper adipogenesis,
while in mSVF the effects were similar but much smaller in
magnitude. These differences could be explained by the
different level of commitment of hMADS compared with
primary pre-adipocytes. Furthermore, while GCs are required
for human adipocyte differentiation they are largely dispens-
able in mouse models [11]. Therefore, it should not come as a
surprise that our conditional Hand2 mouse model using
Adipoq-Cre did not show any overt metabolic phenotype, as
the Adipoq gene and hence the Cre recombinase are expressed
relatively late in adipocyte differentiation [26]. One way to
probe this further would be to deplete Hand2 under a Cre
driver specifically expressed in the commitment phase of the
adipocytes, such as Wnt or hedgehog [29, 30]. Nevertheless,
those master regulators are not specific to adipocytes and
might lead to lethality in the very early stage of the embryo
development similarly to the global deletion of Hand2 [16,
17]. As Hand1 gene expression was undetectable in adipo-
cytes, it is unlikely that there is compensation of HAND2 loss
by HAND1 activity in our studies.

The second major finding of our study is that HAND2
expression is regulated by GCs via GR during early and late
stages of adipogenesis. Available data in the literature did not
identify HAND2 as a direct target of GR [11, 31, 32], a find-
ing that we confirmed by performing GR ChIP qPCR. We
also investigated the HAND2 promoter area and did not find
potential interactions between PPARG, PRDM16, CEBPA
and CEBPB. Our RNAseq results demonstrated that GR is
required for the global effects of DEX, which was expected.
In contrast, cells with loss of HAND2 still had a relatively
intact transcription profile, indicating that HAND2 only regu-
lates a small and defined set of genes upon DEX treatment.
Further analyses are required to interrogate the relevance of
these putative downstream effectors of HAND2 for

�Fig. 6 HAND2 is regulated by GCs via the GR. (a–d) HAND2 and
NR3C1 expression in hMADS pre-adipocytes (n = 5 replicates) (a,b)
and mature adipocytes (n = 4 replicates) (c,d), transfected with
siHAND2 or siNR3C1, treated or not with DEX (1 μmol/l) for 12 h. (e–
h) Hand2 and Nr3c1 expression in mSVF pre-adipocytes (n = 3
replicates) (e,f) and mature adipocytes (n = 3 replicates) (g,h) from
Hand2flox/flox mice. (i–l) Hand2 and Nr3c1 expression in mSVF in pre-
adipocytes (n = 3–5 replicates) (i, j) and differentiated adipocytes (n = 5
replicates) (k,l), all treated with tamoxifen and treated or not with DEX (1
μmol/l) for 12 h from GRERT2Cre mice. (m,n) Hand2 and Nr3c1
expression in mSVF differentiated adipocytes and transfected with
siHand2 or siNr3c1 24 h before DEX treatment (1 μmol/l) for 12 h.
Data are presented as fold change compared to the condition siCtr (a–d,
m,n); to the condition Ctr (e–h), to the conditionWT (i–l). Statistics: two-
way ANOVA with Tukey test; mean ± SEM (a–n). Statistical
significance is indicated by *p < 0.05, WT, wild-type
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adipogenesis. Considering the pleiotropic effects of DEX and
GR signalling in the body, it is possible that some of the
previous functions attributed to HAND2, for example in the
heart, also involve GR activity as well as, vice versa, that
established GR-mediated effects, for example in immune
cells, could also involve HAND2.

Finally, lower levels of Hand2 in gWAT and visWAT
observed under chronic DEX treatment might be explained
by the induction of a regulatory feedback loop or by the length
of the exposure. Furthermore, HAND2 expression correlates
with BMI in visWAT but not scWAT. While more work is
needed to understand this depot-specific regulation, it might
relate to 11β-hydroxysteroid dehydrogenase (HSD)-1, a key
enzyme in GC metabolism that contributes to the increased
levels of GCs specifically in visWAT of obese individuals
[33–35]. Under these conditions, reactivation of HAND2
expression in obesity could help stimulate adipogenesis and
healthy adipose tissue expansion, thus restoring insulin sensi-
tivity and metabolic health. In summary, our study introduces
HAND2 as a novel player in adipogenesis and highlights a
new layer of GC–GR signalling, thus enhancing our under-
standing of adipocyte biology in obesity.
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