84 research outputs found

    Measurements of the spectral energy distribution of the cosmic infrared background

    Full text link
    The extragalactic background light (EBL) is the relic emission of all processes of structure formation in the Universe. About half of this background, called the Cosmic Infrared Background (CIB) is emitted in the 8-1000 microns range, and peaks around 150 microns. It is due to the dust reemission from star formation processes and AGN emission. The CIB spectral energy distribution (SED) constraints the models of star formation in the Universe. It is also useful to compute the opacity of the Universe to the TeV photons. We present the different types of measurements of the CIB and discuss their strengths and weaknesses. 1. The absolute SED was measured by COBE, and by other experiments. These measurements are limited by the accuracy of the component separation, i.e. the foreground subtraction. 2. Robust lower limits are determined from the extragalactic number counts of infrared galaxies. These lower limits are very stringent up to 100 microns. At larger wavelengths, the rather low angular resolution of the instruments limits strongly the depth of the number counts. The "stacking" method determines the flux emitted at a given wavelength by a population detected at another wavelength, and provides stringent lower limits in the sub-mm range. It is complementary with other methods based on the statistical analysis of the map properties like the P(D) analysis. 3. Finally, upper limits can be derived from the high energy spectra of extragalactic sources. These upper limits give currently good constraints in the near- and mid-IR. Progress have been amazing since the CIB discovery about 15 years ago: the SED is much better known, and most of it can be accounted for by galaxies (directly or indirectly). Prospects are also exciting, with fluctuation analysis with Planck&Herschel, and forthcoming missions.Comment: 9 pages, 1 figure, 1 table, proceedings of invited talk at CRF2010, DESY Hamburg, Nov 9-12 201

    Inversion de données infrarouges issues du télescope SPITZER

    Get PDF
    Nous nous intéressons dans ce papier à l'inversion de données infrarouges issues du télescope spatial SPITZER avec l'imageur MIPS à 160 microns. Le principal problème rencontré est la perturbation des mesures sur le ciel par le dépôt d'énergie des rayons cosmiques dans le détecteur. Ces particules de haute énergie peuvent modifier temporairement les gains des capteurs en altérant la structure du semiconducteur. Nous avons donc développé un algorithme d'estimation conjointe du gain et de l'image infrarouge du ciel. Cet algorithme repose sur la minimisation d'un critère par une approche de type gradient conjugué

    Exploratory Visualization of Astronomical Data on Ultra-high-resolution Wall Displays

    Get PDF
    International audienceUltra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touch-sensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays

    Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 micron Imaging

    Get PDF
    The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 micron coarse- and fine-scale imaging modes are presented based on over 2.5 years of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long-term detector transients. Point spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse-scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^-1, and with spectral types from B to M. The coarse-scale calibration is 702 +/- 35 MJy sr^-1 MIPS70^-1 (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 micron coarse- and fine-scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all time scales probed. The preliminary fine-scale calibration factor is 2894 +/- 294 MJy sr^-1 MIPS70F^-1 (10% uncertainty) based on 10 stars. The uncertainty in the coarse- and fine-scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5-sigma, 500 s sensitivity of the coarse-scale observations is 6-8 mJy. This work shows that the MIPS 70 micron array produces accurate, well calibrated photometry and validates the MIPS 70 micron operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.Comment: 19 pages, PASP, in pres

    The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared

    Get PDF
    Recent studies revealed a strong correlation between the star formation rate (SFR) and stellar mass of star-forming galaxies, the so-called star-forming main sequence. An empirical modeling approach (2-SFM) which distinguishes between the main sequence and rarer starburst galaxies is capable of reproducing most statistical properties of infrared galaxies. In this paper, we extend this approach by establishing a connection between stellar mass and halo mass with the technique of abundance matching. Based on a few, simple assumptions and a physically motivated formalism, our model successfully predicts the (cross-)power spectra of the cosmic infrared background (CIB), the cross-correlation between CIB and cosmic microwave background (CMB) lensing, and the correlation functions of bright, resolved infrared galaxies measured by Herschel, Planck, ACT and SPT. We use this model to infer the redshift distribution these observables, as well as the level of correlation between CIB-anisotropies at different wavelengths. We also predict that more than 90% of cosmic star formation activity occurs in halos with masses between 10^11.5 and 10^13.5 Msun. Taking into account subsequent mass growth of halos, this implies that the majority of stars were initially (at z>3) formed in the progenitors of clusters, then in groups at 0.5<z<3 and finally in Milky-Way-like halos at z<0.5. At all redshifts, the dominant contribution to the star formation rate density stems from halos of mass ~10^12 Msun, in which the instantaneous star formation efficiency is maximal (~70%). The strong redshift-evolution of SFR in the galaxies that dominate the CIB is thus plausibly driven by increased accretion from the cosmic web onto halos of this characteristic mass scale

    Dusty Infrared Galaxies: Sources of the Cosmic Infrared Background

    Full text link
    The discovery of the Cosmic Infrared Background (CIB) in 1996, together with recent cosmological surveys from the mid-infrared to the millimeter have revolutionized our view of star formation at high redshifts. It has become clear, in the last decade, that a population of galaxies that radiate most of their power in the far-infrared (the so-called ``infrared galaxies'') contributes an important part of the whole galaxy build-up in the Universe. Since 1996, detailed (and often painful) investigations of the high-redshift infrared galaxies have resulted in the spectacular progress covered in this review. We outline the nature of the sources of the CIB including their star-formation rate, stellar and total mass, morphology, metallicity and clustering properties. We discuss their contribution to the stellar content of the Universe and their origin in the framework of the hierarchical growth of structures. We finally discuss open questions for a scenario of their evolution up to the present-day galaxies.Comment: To appear in Annual Reviews of Astronomy and Astrophysics, 2005, vol 43. 31 pages, 12 color figure

    Spitzer 70/160 μm observations of high-redshift ULIRGs and HyLIRSs in the Boötes field

    Get PDF
    We present new 70 and 160 μm observations of a sample of extremely red (R – [24] ≳ 15 mag), mid-infrared bright, high-redshift (1.7 ≾ z ≾ 2.8) galaxies. All targets detected in the far-infrared exhibit rising spectral energy distributions (SEDs) consistent with dust emission from obscured active galactic nuclei (AGNs) and/or star-forming regions in luminous IR galaxies (LIRGs). We find that the SEDs of the high-redshift sources are more similar to canonical AGN-dominated local ultraluminous IR galaxies (ULIRGs) with significant warm dust components than to typical local star-forming ULIRGs. The inferred IR (8-1000 μm) bolometric luminosities are found to be Lbol ~ 4 × 10^12 L⊙ to ~3 × 10^13 L⊙ (ULIRGs/hyper-luminous IR galaxies (HyLIRGs)), representing the first robust constraints on Lbol for this class of object

    JWST's PEARLS: TN J1338-1942 -- I. Extreme jet triggered star-formation in a z=4.11 luminous radio galaxy

    Get PDF
    We present the first JWST observations of the z = 4.11 luminous radio galaxy TN J1338–1942, obtained as part of the ‘Prime Extragalactic Areas for Reionization and Lensing Science’ (‘PEARLS’) project. Our NIRCam observations, designed to probe the key rest-frame optical continuum and emission line features at this redshift, enable resolved spectral energy distribution modelling that incorporates both a range of stellar population assumptions and radiative shock models. With an estimated stellar mass of log10(M/M) ∼ 10.9, TN J1338–1942 is confirmed to be one of the most massive galaxies known at this epoch. Our observations also reveal extremely high equivalent-width nebular emission coincident with the luminous AGN jets that is best fit by radiative shocks surrounded by extensive recent star formation. We estimate the total star-formation rate (SFR) could be as high as ∼ 1600 M yr−1 , with the SFR that we attribute to the jet induced burst conservatively 500 M yr−1. The mass-weighted age of the star-formation, tmass < 4 Myr, is consistent with the likely age of the jets responsible for the triggered activity and significantly younger than that measured in the core of the host galaxy. The extreme scale of the potential jet-triggered star-formation activity indicates the potential importance of positive AGN feedback in the earliest stages of massive galaxy formation, with our observations also illustrating the extraordinary prospects for detailed studies of high-redshift galaxies with JWST.KJD acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 892117 (HIZRAD) and support from the STFC through an Ernest Rutherford Fellowship (grant number ST/W003120/1). RAW, SHC, and RAJ acknowledge support from NASA JWST Interdisciplinary Scientist grants NAG5-12460, NNX14AN10G, and 80NSSC18K0200 from GSFC. Work by CJC acknowledges support from the European Research Council (ERC) Advanced Investigator Grant EPOCHS (788113). BLF thanks the Berkeley Center for Theoretical Physics for their hospitality during the writing of this paper. MAM acknowledges the support of a National Research Council of Canada Plaskett Fellowship, and the Australian Research Council center of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE17010001. CNAW acknowledges funding from the JWST/NIRCam contract NASS-0215 to the University of Arizona. TAH is supported by an appointment to the NASA Postdoctoral Program (NPP) at NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities under contract with NASA.Peer reviewe

    SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey

    Get PDF
    The SIRTF Wide-Area Infrared Extragalactic Survey (SWIRE), the largest SIRTF Legacy program, is a wide-area imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and active galactic nuclei (AGNs) as a function of environment, from redshifts to the current z ∼ 3 epoch. SWIRE will survey seven high-latitude fields, totaling 60–65 deg2 in all seven SIRTF bands: Infrared Array Camera (IRAC) 3.6, 4.5, 5.6, and 8 mm and Multiband Imaging Photometer for SIRTF (MIPS) 24, 70, and 160 mm. Extensive modeling suggests that the Legacy Extragalactic Catalog may contain in excess of 2 million IR-selected galaxies, dominated by (1) ∼150,000 luminous infrared galaxies (LIRGs; LFIR 1 1011 L,) detected by MIPS (and significantly more detected by IRAC), ∼7000 of these with ; (2) 1 million IRAC- z 1 2 detected early-type galaxies (∼ with and ∼10,000 with ); and (3) ∼20,000 classical AGNs 5 2 # 10 z 1 1 z 1 2 detected with MIPS, plus significantly more dust-obscured quasi-stellar objects/AGNs among the LIRGs. SWIRE will provide an unprecedented view of the evolution of galaxies, structure, and AGNs. The key scientific goals of SWIRE are (1) to determine the evolution of actively star forming and passively evolving galaxies in order to understand the history of galaxy formation in the context of cosmic structure formation; (2) to determine the evolution of the spatial distribution and clustering of evolved galaxies, starbursts, and AGNs in the key redshift range over which much of cosmic evolution has occurred; and (3) to 0.5 ! z ! 3 determine the evolutionary relationship between “normal galaxies” and AGNs and the contribution of AGN accretion energy versus stellar nucleosynthesis to the cosmic backgrounds. The large area of SWIRE is important to establish statistically significant population samples over enough volume cells that we can resolve the star formation history as a function of epoch and environment, i.e., in the context of structure formation. The large volume is also optimized for finding rare objects. The SWIRE fields are likely to become the next generation of large “cosmic windows” into the extragalactic sky. They have been uniquely selected to minimize Galactic cirrus emission over large scales. The Galaxy Evolution Explorer will observe them as part of its deep 100 deg2 survey, as will Herschel. SWIRE includes ∼9 deg2 of the unique large-area XMM Large Scale Structure hard X-ray imaging survey and is partly covered by the UKIDSS deep J and K survey. An extensive optical/near-IR imaging program is underway from the ground. The SWIRE data are nonproprietary; catalogs and images will be released twice yearly, beginning about 11 months after SIRTF launch. Details of the data products and release schedule are presented

    An Earth-system prediction initiative for the twenty-first century

    Get PDF
    International audienceSome scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI
    corecore