5,698 research outputs found

    Classical Cepheids: Yet another version of the Baade-Becker-Wesselink method

    Full text link
    We propose a new version of the Baade--Becker--Wesselink technique, which allows one to independently determine the colour excess and the intrinsic colour of a radially pulsating star, in addition to its radius, luminosity, and distance. It is considered to be a generalization of the Balona approach. The method also allows the function F(CI) = BC + 10 log (Teff) for the class of pulsating stars considered to be calibrated. We apply this technique to a number of classical Cepheids with very accurate light and radial-velocity curves and with bona fide membership in open clusters (SZ Tau, CF Cas, U Sgr, DL Cas, GY Sge), and find the results to agree well with the reddening estimates of the host open clusters. The new technique can also be applied to other pulsating variables, e.g. RR Lyrae and RV Tauri.Comment: 6 pages, 2 figures, 1 table; Submitted to Astrophysical Bulletin, 201

    The Standard Model from a New Phase Transition on the Lattice

    Full text link
    Several years ago it was conjectured in the so-called Roma Approach, that gauge fixing is an essential ingredient in the lattice formulation of chiral gauge theories. In this paper we discuss in detail how the gauge-fixing approach may be realized. As in the usual (gauge invariant) lattice formulation, the continuum limit corresponds to a gaussian fixed point, that now controls both the transversal and the longitudinal modes of the gauge field. A key role is played by a new phase transition separating a conventional Higgs or Higgs-confinement phase, from a phase with broken rotational invariance. In the continuum limit we expect to find a scaling region, where the lattice correlators reproduce the euclidean correlation functions of the target (chiral) gauge theory, in the corresponding continuum gauge.Comment: 16 pages, revtex, one figure. Clarifications made, mainly in sections 3 and 6 that deal with the fermion action, to appear in Phys Rev

    Domain Walls of D=8 Gauged Supergravities and their D=11 Origin

    Get PDF
    Performing a Scherk-Schwarz dimensional reduction of D=11 supergravity on a three-dimensional group manifold we construct five D=8 gauged maximal supergravities whose gauge groups are the three-dimensional (non-)compact subgroups of SL(3,R). These cases include the Salam-Sezgin SO(3) gauged supergravity. We construct the most general half-supersymmetric domain wall solutions to these five gauged supergravities. The generic form is a triple domain wall solution whose truncations lead to double and single domain wall solutions. We find that one of the single domain wall solutions has zero potential but nonzero superpotential. Upon uplifting to 11 dimensions each domain wall becomes a purely gravitational 1/2 BPS solution. The corresponding metric has a 7+4 split with a Minkowski 7-metric and a 4-metric that corresponds to a gravitational instanton. These instantons generalize the SO(3) metric of Belinsky, Gibbons, Page and Pope (which includes the Eguchi-Hanson metric) to the other Bianchi types of class A.Comment: 23 pages, 1 figure, minor changes, references adde

    A randomized study of nutritional supplementation in patients with unilateral wet age-related macular degeneration

    Get PDF
    The purpose of this study is evaluate the efficacy and safety of medicinal products con-taining the original Age-Related Eye Disease group (AREDS) formulation at doses approved in Europe (EU, control group; n = 59) with a product that adds DHA, lutein, zeaxanthin, resveratrol and hydroxytyrosol to the formula (intervention group; n = 50). This was a multicenter, random-ized, observer-blinded trial conducted in patients aged 50 years or older diagnosed with unilateral exudative Age related Macular Degeneration AMD. At month 12, the intervention did not have a significant differential effect on visual acuity compared with the control group, with an estimated treatment difference in Early Treatment Diabetic Retinopathy Study (ETDRS) of -1.63 (95% CI -0.83 to 4.09; p = 0.192). The intervention exhibited a significant and, in most cases, relevant effect in terms of a reduction in some inflammatory cytokines and a greater improvement in the fatty acid profile and serum lutein and zeaxantin concentration. In patients with unilateral wet AMD, the addition of lutein, zeaxanthin, resveratrol, hydroxytyrosol and DHA to the AREDS EU recommended doses in the short-term did not have a differential effect on visual acuity compared to a standard AREDS EU formula but, in addition to improving the fatty acid profile and increasing carotenoid serum levels, may provide a beneficial effect in improving the proinflammatory and proangiogenic profile of patients with AMD. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

    Get PDF
    The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639

    The contact angle of nanofluids as thermophysical property

    Get PDF
    Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids – suspensions containing nanometre-sized particles – can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore