381 research outputs found
Hennessy-Hicks Training Needs Analysis (TNA) questionnaire and manual
The Hennessy-Hicks Training Needs Analysis (TNA) Questionnaire was developed as a means of rigorously evaluating health care professionalsâ training requirements and using these results to prioritize education and development in a way that meets local needs.
The questionnaire measures a range of clinical, managerial, interpersonal, administrative, and research/audit activities and can be used with individuals, teams or whole organizations. It provides information about current performance levels, the skill areas most in need of development and the ways in which this might best be achieved.
The information can be used in priority-setting and policy development, educational commissioning, individual performance reviews, as well as to assess the value and impact of professional development programs. It has been designed to be flexible, allowing it to be adapted for use within any setting and for any purpose.
The accompanying manual provides full details of the questionnaire, how to use it, how to analyze the information, and how to customize it for use
Cache Based Power Analysis Attacks on AES
International audienceThis paper describes possible attacks against software implementations of AES running on processors with cache mechanisms, particularly in the case of smart cards. These attacks are based on sidechannel information gained by observing cache hits and misses in the current drawn by the smart card. Two dierent attacks are described. The first is a combination of ideas proposed in [2] and [11] to produce an attack that only requires the manipulation of the plain text and the observation of the current. The second is an attack based on specific implementations of the xtime function [10]. These attacks are shown to also work against algorithms using Boolean data masking techniques as a DPA countermeasure
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ
A search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ is performed with a data sample, corresponding to an integrated luminosity of 1.0ââfb-1 of pp collisions at âs=7ââTeV, collected by the LHCb experiment. The observed number of Bs0âe±Όâ and B0âe±Όâ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0âe±Όâ)101ââTeV/c2 and MLQ(B0âe±Όâ)>126ââTeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Branching fraction and CP asymmetry of the decays B+âK0SÏ+ and B+âK0SK+
An analysis of B+ â K0
SÏ+ and B+ â K0
S K+ decays is performed with the LHCb experiment. The pp
collision data used correspond to integrated luminosities of 1 fbâ1 and 2 fbâ1 collected at centre-ofmass
energies of
â
s = 7 TeV and
â
s = 8 TeV, respectively. The ratio of branching fractions and the
direct CP asymmetries are measured to be B(B+ â K0
S K+
)/B(B+ â K0
SÏ+
) = 0.064 ± 0.009 (stat.) ±
0.004 (syst.), ACP(B+ â K0
SÏ+
) = â0.022 ± 0.025 (stat.) ± 0.010 (syst.) and ACP(B+ â K0
S K+
) =
â0.21 ± 0.14 (stat.) ± 0.01 (syst.). The data sample taken at
â
s = 7 TeV is used to search for
B+
c
â K0
S K+ decays and results in the upper limit ( fc · B(B+
c
â K0
S K+
))/( fu · B(B+ â K0
SÏ+
)) <
5.8 Ă 10â2 at 90% confidence level, where fc and fu denote the hadronisation fractions of a ÂŻb
quark
into a B+
c or a B+ meson, respectively
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- âŠ