125 research outputs found

    The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Get PDF
    Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review

    Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes

    Get PDF
    BACKGROUND: The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs), which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role. RESULTS: To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs]) for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show – using an ex vivo fusion assay for each allelic form – that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most – but not all – of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD. CONCLUSION: Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved

    Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection.

    Get PDF
    International audienceHepatitis C virus (HCV) establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1) mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL) particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR) agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts). The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis, leading to the inhibition of virus-cell fusion and thus HCV cell entry. Therefore besides other beneficial roles, ABCA1 might represent a potential target for HCV therapy

    Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments

    Get PDF
    A bis-epoxide monomer was synthesised in two steps from (R)-carvone, a terpenoid renewable feedstock derived from spearmint oil, and used to prepare β-aminoalcohol oligomers in polyaddition reactions with bis-amines without requiring solvent or catalyst. A sub-set of the resultant materials were readily water soluble and were investigated for antifungal activity in combination with the fungicide iodopropynyl-butylcarbamate (IPBC) or the antifungal drug amphotericin B. The oligo-(β-aminoalcohol)s alone were inactive against Trichoderma virens and Candida albicans but in combination with IPBC and amphotericin B demonstrated synergistic growth-inhibition of both fungi. Quantitative analysis showed that the presence of the terpene-based oligomers decreased the minimum inhibitory concentration (MIC) of IPBC by up to 64-fold and of amphotericin B by 8-fold. The efficacy of the combined formulation was further demonstrated with agar disk diffusion assays, which revealed that IPBC and amphotericin B reduced the growth of the fungi, as shown by zones of inhibition, to a greater extent when in the presence of the oligo-(β-aminoalcohol)s. These data suggest potential future use of these renewable feedstock derived oligomers in antifungal material and related biomedical applications

    Mothers with higher twinning propensity had lower fertility in pre-industrial Europe

    Get PDF
    Historically, mothers producing twins gave birth, on average, more often than non-twinners. This observation has been interpreted as twinners having higher intrinsic fertility - a tendency to conceive easily irrespective of age and other factors - which has shaped both hypotheses about why twinning persists and varies across populations, and the design of medical studies on female fertility. Here we show in >20k pre-industrial European mothers that this interpretation results from an ecological fallacy: twinners had more births not due to higher intrinsic fertility, but because mothers that gave birth more accumulated more opportunities to produce twins. Controlling for variation in the exposure to the risk of twinning reveals that mothers with higher twinning propensity - a physiological predisposition to producing twins - had fewer births, and when twin mortality was high, fewer offspring reaching adulthood. Twinning rates may thus be driven by variation in its mortality costs, rather than variation in intrinsic fertility

    The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry

    Get PDF
    Two to three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Here, we have identified a partner of CD81, EWI-2wint, which is expressed in several cell lines but not in hepatocytes. Ectopic expression of EWI-2wint in a hepatoma cell line susceptible to HCV infection blocked viral entry by inhibiting the interaction between the HCV envelope glycoproteins and CD81. This finding suggests that, in addition to the presence of specific entry factors in the hepatocytes, the lack of a specific inhibitor can contribute to the hepatotropism of HCV. This is the first example of a pathogen gaining entry into host cells that lack a specific inhibitory factor

    Two Chromogranin A-Derived Peptides Induce Calcium Entry in Human Neutrophils by Calmodulin-Regulated Calcium Independent Phospholipase A2

    Get PDF
    Background: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaMbinding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Les N-glycanes du virus de l'hépatite C protègent contre la neutralisation mais sont une cible thérapeutique potentielle

    No full text
    Plus de 170 millions de personnes dans le monde sont chroniquement infectées par le virus de l'hépatite C (VHC), un virus enveloppé appartenant au genre Hepacivirus dans la famille des Flaviviridae. Les protéines d'enveloppe du VHC sont fortement N-glycosylées, avec généralement 4 et 11 N-glycanes sur E1 et E2 respectivement. La majorité des sites de glycosylation de E1 et E2 sont très conservés, et certains glycanes jouent un rôle essentiel pour le repliement de ces protéines d'enveloppe et pour l'entrée du VHC. D'autre part, un tel niveau de glycosylation suggère que ces glycanes peuvent limiter l'immunogénicité des protéines d'enveloppe du VHC et moduler la fixation de certains anticorps sur leurs épitopes. Par conséquent, nous avons étudié si les glycanes associés aux protéines E1 et E2 modulaient l'activité neutralisante des anticorps anti-VHC. Pour cela, nous avons utilisé des pseudoparticules rétrovirales du VHC (VHCpp) portant les glycoprotéines d'enveloppe sauvages ou mutées au niveau des sites de glycosylation et évalué leur sensibilité à des anticorps neutralisants. Nos résultats indiquent qu'au moins trois glycanes localisés sur la protéine E2 (notés E2N1, E2N6 et E2N11) réduisent la sensibilité des VHCpp à la neutralisation. De façon intéressante, ces trois glycanes réduisent également l'accès de CD81 (une protéine cellulaire de surface impliquée dans l'entrée du VHC) à son site d'interaction sur E2. Ces données suggèrent donc que les glycanes E2N1, E2N6 et E2N11 sont proches du site d'interaction à CD81 et modulent l'interaction de CD81 et des anticorps neutralisants avec la protéine E2. Ainsi, nos données indiquent que les glycanes contribuent à l'échappement du VHC vis à vis de la réponse immunitaire humorale. Trois rôles majeurs ont été attribués aux glycanes du VHC : le repliement des protéines d'enveloppe, l'entrée virale et la protection vis à vis de la neutralisation. Puisque les glycanes du VHC sont très conservés et sont essentiels pour le cycle viral, ils constituent une cible intéressante pour le développement de nouvelles stratégies thérapeutiques anti-VHC. En raison des difficultés à propager le VHC en culture cellulaire, aucun inhibiteur de l'entrée n'a été décrit pour ce virus. Toutefois, le développement des VHCpp et les progrès récents dans l'amplification du VHC en culture cellulaire (VHCcc) permettent aujourd'hui l'étude de l'entrée du VHC ainsi que l'identification et la caractérisation de molécules qui bloquent cette étape. La Cyanovirin-N (CV-N) est une lectine qui a été découverte grâce à son activité anti-VIH. Puisque les protéines d'enveloppe du VHC sont glycosylées, nous avons étudié l'activité potentielle de la CV-N contre ce virus. Nous avons ainsi montré que la CV-N inhibait l'infectiosité des VHCcc et des VHCpp à des concentrations nanomolaires. Cette inhibition est due à une interaction spécifique de la CV-N avec les glycanes associés aux protéines E1 et E2, ce qui empêche l'interaction de E2 avec CD81. Nos données mettent donc en évidence que le ciblage des glycanes présents sur les protéines d'enveloppe du VHC est une approche prometteuse pour lutter contre ce virus.LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF
    corecore