10 research outputs found

    Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion

    Get PDF
    Myeloid-related proteins (MRPs) 8 and 14 are cytosolic proteins secreted from myeloid cells as proinflammatory mediators. Currently, the functional role of circulating extracellular MRP8/14 is unclear. Our present study identifies extracellular MRP8/14 as an autocrine player in the leukocyte adhesion cascade. We show that E-selectin-PSGL-1 interaction during neutrophil rolling triggers Mrp8/14 secretion. Released MRP8/14 in turn activates a TLR4-mediated, Rap1-GTPase-dependent pathway of rapid beta 2 integrin activation in neutrophils. This extracellular activation loop reduces leukocyte rolling velocity and stimulates adhesion. Thus, we identify Mrp8/14 and TLR4 as important modulators of the leukocyte recruitment cascade during inflammation in vivo

    Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion

    Get PDF
    Myeloid-related proteins (MRPs) 8 and 14 are cytosolic proteins secreted from myeloid cells as proinflammatory mediators. Currently, the functional role of circulating extracellular MRP8/14 is unclear. Our present study identifies extracellular MRP8/14 as an autocrine player in the leukocyte adhesion cascade. We show that E-selectin-PSGL-1 interaction during neutrophil rolling triggers Mrp8/14 secretion. Released MRP8/14 in turn activates a TLR4-mediated, Rap1-GTPase-dependent pathway of rapid beta 2 integrin activation in neutrophils. This extracellular activation loop reduces leukocyte rolling velocity and stimulates adhesion. Thus, we identify Mrp8/14 and TLR4 as important modulators of the leukocyte recruitment cascade during inflammation in vivo

    Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response

    No full text
    Background: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking. Methods: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA). Expression of Cr2 in the spinal cord was studied in a separate cohort of DA and PVG rats at different time-points after VRA, and also following sciatic nerve transection (SNT) in the same strains. Consequently, Cr2(-/-) mice and Wt controls were used to further explore the role of Cr2 in the spinal cord following SNT. The in vivo experiments were complemented by astrocyte and microglia cell cultures. Results: Expression of Cr2 in naive spinal cord was low but strongly up regulated at 5-7 days after both VRA and SNT. Levels of Cr2 expression, as well as astrocyte activation, was higher in PVG rats than DA rats following both VRA and SNT. Subsequent in vitro studies proposed astrocytes as the main source of Cr2 expression. A functional role for Cr2 is suggested by the finding that transgenic mice lacking Cr2 displayed increased loss of synaptic nerve terminals following nerve injury. We also detected increased levels of soluble CR2 (sCR2) in the cerebrospinal fluid of rats following VRA. Conclusions: These results demonstrate that local expression of Cr2 in the central nervous system is part of the axotomy reaction and is suggested to modulate subsequent complement mediated effects

    Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    No full text
    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra-and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by a set of molecules, i.e. integrins and chemokine receptors, which are also described for the recruitment of differentiated innate immune cells. In this review, an overview will be given on fetal haematopoiesis as well as trafficking of HSCs during fetal life. In addition, we will focus on the appearance of the first differentiated neutrophils and monocytes in the fetal circulation and describe how they acquire the ability to roll, adhere, and transmigrate into inflamed fetal tissue. Furthermore, we will discuss other effector functions of innate immune cells evolving during fetal ontogeny

    Vitamin D supplementation for term breastfed infants to prevent vitamin D deficiency and improve bone health

    No full text

    Literaturverzeichnis

    No full text
    corecore