47 research outputs found

    Motorcycle safety after-dark : the factors associated with greater risk of road-traffic collisions

    Get PDF
    The effect of ambient light level on road traffic collisions (RTCs) involving a motorcycle was investigated. Data were drawn from the STATS19 database of UK reported RTCs for the period 2005–2015. To isolate the effect of ambient light (daylight vs darkness) an odds ratio was used to compare RTCs at specific times of day in the weeks either side of the Spring and Autumn clock changes. This work extended previous studies by using a more precise method for distinguishing between RTCs in daylight and after dark, thus avoiding the ambiguity of twilight. Data for four-wheel motor vehicle (FWMV) RTCs were also investigated to provide a datum. As expected, the risk of an RTC occurring was significantly higher after dark compared to daylight for both motorcycles and FWMVs. Investigation of contextual factors suggests that risk after dark is significantly higher for motorcycles compared to FWMVs for RTCs with two-vehicles, on roads with low speed limits (≤30 mph), at T-junctions, and junctions controlled by a give way sign. These are the situations where visual aids for increasing conspicuity after dark have the greater potential for reducing motorcycle RTCs

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    A universal power-law prescription for variability from synthetic images of black hole accretion flows

    Get PDF
    Instrumentatio

    First sagittarius A* Event Horizon Telescope results. VI. Testing the black hole metric

    Get PDF
    Galaxie

    First sagittarius A* Event Horizon Telescope results. IV. Variability, morphology, and black hole mass

    Get PDF
    Galaxie

    First M87 Event Horizon Telescope results. IX.: detection of near-horizon circular polarization

    Get PDF
    Galaxie

    Characterizing and mitigating intraday variability: reconstructing source structure in accreting black holes with mm-VLBI

    Get PDF
    Instrumentatio

    First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way

    Get PDF
    Galaxie

    First Sagittarius A* event horizon telescope results. II. EHT and multiwavelength observations, data processing, and calibration

    Get PDF
    Instrumentatio
    corecore