553 research outputs found

    Magnetic Field Measurement with Ground State Alignment

    Full text link
    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1G≳B≳10−151{\rm G}\gtrsim B\gtrsim 10^{-15}G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this article, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.Comment: 30 pages, 12 figures, chapter in Lecture Notes in Physics "Magnetic Fields in Diffuse Media". arXiv admin note: substantial text overlap with arXiv:1203.557

    Study of Interplanetary Magnetic Field with Ground State Alignment

    Full text link
    We demonstrate a new way of studying interplanetary magnetic field -- Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter's Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc

    Predicting the Position of Attributive Adjectives in the French NP

    Get PDF
    Cet article est une version révisée de l'article paru dans Student session of the European Summer School for Logic, Language and Information, Copenhague : Danemark (2010)International audienceThis article proposes a quantitative study of the placement alternation for the adjective within the noun phrase in French. Taking the hypothesis that position constraints are mostly preferential as a starting point, we develop a methodology based on statistical inference in order to provide a formal account of the relative importance of different groups of constraints. Results show the relative importance of lexical constraints and that frequency-based and length constraints are the best predictors. This suggests that the placement of adjectives not only depends on our knowledge of lexical items but also on the knowledge of the way in which we use them in discourse, i.e. on usage

    Constitutions and Policy Comparisons

    Get PDF
    Voters in democracies can learn from the experience of neighbouring states: about policy in a direct democracy (`policy experimentation'), about the quality of their politicians in a representative democracy (`yardstick competition'). Learning between states creates spillovers from policy choice, and also from constitutional choice. I model these spillovers in a simple principal-agent framework, and show that voter welfare may be maximized by a mixture of representative and direct democratic states. Because of this, empirical work examining voter welfare under direct democracy may need to be reinterpreted. Also, I show that the optimal mix of constitutions cannot always be achieved in a constitutional choice equilibrium involving many states. </jats:p

    Explicit differential characterization of the Newtonian free particle system in m > 1 dependent variables

    Full text link
    In 1883, as an early result, Sophus Lie established an explicit necessary and sufficient condition for an analytic second order ordinary differential equation y_xx = F(x,y,y_x) to be equivalent, through a point transformation (x,y) --> (X(x,y), Y(x,y)), to the Newtonian free particle equation Y_XX = 0. This result, preliminary to the deep group-theoretic classification of second order analytic ordinary differential equations, was parachieved later in 1896 by Arthur Tresse, a French student of S. Lie. In the present paper, following closely the original strategy of proof of S. Lie, which we firstly expose and restitute in length, we generalize this explicit characterization to the case of several second order ordinary differential equations. Let K=R or C, or more generally any field of characteristic zero equipped with a valuation, so that K-analytic functions make sense. Let x in K, let m > 1, let y := (y^1, ..., y^m) in K^m and let y_xx^j = F^j(x,y,y_x^l), j = 1,...,m be a collection of m analytic second order ordinary differential equations, in general nonlinear. We provide an explicit necessary and sufficient condition in order that this system is equivalent, under a point transformation (x, y^1, ..., y^m) --> (X(x,y), Y^1(x,y),..., Y^m(x, y)), to the Newtonian free particle system Y_XX^1 = ... = Y_XX^m = 0. Strikingly, the (complicated) differential system that we obtain is of first order in the case m > 1, whereas it is of second order in S. Lie's original case m = 1.Comment: 76 pages, no figur

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    • 

    corecore