292 research outputs found

    Alcohol and HIV Decrease Proteasome and Immunoproteasome Function in Macrophages: Implications for Impaired Immune Function During Disease

    Get PDF
    Proteasomes (proteinase complexes, PR) and immunoproteasomes (IPR) degrade damaged proteins and affect protein processing required for antigen presentation by mononuclear phagocytes. These critical immune processes are attenuated during progressive HIV-1 infection and are affected by alcohol abuse. To investigate the mechanisms underlying these functional changes, we measured PR and CYP2E1 activities [an ethanol (EtOH) metabolizing enzyme] and reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM) following HIV-1 infection and EtOH treatment. We observed progressive declines of PR activity and PR/IPR contents in HIV-1-infected MDM. PR activity and IPR expression increased after IFN-γ stimulation but reduced after HIV-1 infection. EtOH inhibited both IFN-γ -induced PR and IPR. Paradoxically, EtOH attenuated PR catalytic activity in infected MDM and suppressed viral replication. Elevated ROS followed EtOH exposure and paralleled decreased PR activity. The latter was restored by anti-oxidant. The data support the notion that HIV-1 infection and EtOH may work in concert to affect immune function including antigen presentation and thereby affect disease progression

    Alcohol-related cerebellar degeneration: not all down to toxicity?

    Get PDF
    Background: Alcohol-related cerebellar degeneration is one of the commonest acquired forms of cerebellar ataxia. The exact pathogenic mechanisms by which alcohol leads to cerebellar damage remain unknown. Possible autoreactive immune mediated mechanisms have not been explored previously. In this study, we aim to investigate the potential role of alcohol-induced immune mediated cerebellar degeneration. Methods: Patients with ataxia and a history of alcohol misuse were recruited from the Ataxia and Hepatology tertiary clinics at Sheffield Teaching Hospitals NHS Trust. We determined the pattern of cerebellar involvement both on clinical (SARA score) and imaging (MRI volumetry and MR spectroscopy) parameters. In addition, HLA genotyping, serological markers for gluten-related disorders and serological reactivity on rat cerebellar tissue using indirect immunohistochemistry were assessed. Results: Thirty-eight patients were included in the study all of whom had ataxia. The gait (97 %), stance (89 %) and heel-shin slide (89 %) were the predominant SARA elements affected. MRI volumetric and spectroscopy techniques demonstrated significant structural, volumetric and functional deficits of the cerebellum with particular involvement of the cerebellar vermis. Circulating anti-gliadin antibodies were detected in 34 % patients vs. 12 % in healthy controls. Antibodies to transglutaminase 6 (TG6) were detected in 39 % of patients and 4 % of healthy control subjects. Using immunohistochemistry, Purkinje cell and/or granular layer reactivity was demonstrated in 71 % of patient sera. Conclusions: Alcohol induced tissue injury to the CNS leading to cerebellar degeneration may also involve immune mediated mechanisms, including sensitisation to gluten

    Methamphetamine Inhibits the Glucose Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine

    Get PDF
    Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers

    Neuroprotective Effects of Pre-Treament with l-Carnitine and Acetyl-l-Carnitine on Ischemic Injury In Vivo and In Vitro

    Get PDF
    The therapeutic effect of stroke is hampered by the lack of neuroprotective drugs against ischemic insults beyond the acute phase. Carnitine plays important roles in mitochondrial metabolism and in modulating the ratio of coenzyme A (CoA)/acyl-CoA. Here, we investigate the neuroprotective effects of l-carnitine (LC) and Acetyl-l-carnitine (ALC) pre-treatment on ischemic insults under the same experimental conditions. We used a transient middle cerebral artery occlusion (MCAO) model to evaluate the protective roles of LC and ALC in acute focal cerebral ischemia in vivo and to understand the possible mechanisms using model of PC12 cell cultures in vitro. Results showed that ALC, but not LC, decreased infarction size in SD rats after MCAO in vivo. However, both LC and ALC pretreatment reduced oxygen-glucose deprivation (OGD)-induced cell injury and decreased OGD-induced cell apoptosis and death in vitro; at the same time, both of them increased the activities of super oxide dismutase (SOD) and ATPase, and decreased the concentration of malondialdehyde (MDA) in vitro. Thus, our findings suggested that LC and ALC pre-treatment are highly effective in the prevention of neuronal cell against ischemic injury in vitro, however, only ALC has the protective effect on neuronal cell injury after ischemia in vivo

    Ethanol-Mediated Regulation of Cytochrome P450 2A6 Expression in Monocytes: Role of Oxidative Stress-Mediated PKC/MEK/Nrf2 Pathway

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus) in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (∼150%) and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide) or an antioxidant (vitamin C). The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK) (U0126) completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism. Thus, this study has clinical relevance because of the high incidence of alcohol use among smokers, especially in HIV-infected individuals

    A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes

    Get PDF
    Background: Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clusteredat the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role ofthe dystroglycan complex and its interaction with perivascular laminin in the clusteringof AQP4 atperivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminindystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. Methodolgy/Principal Findings: In the present study we used primary rat astrocyte cultures toscreen a library of.3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated ß-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on ß-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. Conclusion/Significance: These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs tha

    Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    Get PDF
    BACKGROUND: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits

    Cellular and Mitochondrial Effects of Alcohol Consumption

    Get PDF
    Alcohol dependence is correlated with a wide spectrum of medical, psychological, behavioral, and social problems. Acute alcohol abuse causes damage to and functional impairment of several organs affecting protein, carbohydrate, and fat metabolism. Mitochondria participate with the conversion of acetaldehyde into acetate and the generation of increased amounts of NADH. Prenatal exposure to ethanol during fetal development induces a wide spectrum of adverse effects in offspring, such as neurologic abnormalities and pre- and post-natal growth retardation. Antioxidant effects have been described due to that alcoholic beverages contain different compounds, such as polyphenols as well as resveratrol. This review analyzes diverse topics on the alcohol consumption effects in several human organs and demonstrates the direct participation of mitochondria as potential target of compounds that can be used to prevent therapies for alcohol abusers
    corecore