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Abstract

Previously a standard toxicological test termed as DarT (Danio rerio Teratogenic assay) using wild type zebrafish embryos
has been established and it is widely applied in toxicological and chemical screenings. As an increasing number of
fluorescent transgenic zebrafish lines with specific fluorescent protein expression specifically expressed in different organs
and tissues, we envision that the fluorescent markers may provide more sensitive endpoints for monitoring chemical
induced phenotypical changes. Here we employed Tg(nkx2.2a:mEGFP) transgenic zebrafish which have GFP expression in
the central nervous system to investigate its potential for screening neurotoxic chemicals. Five potential neurotoxins
(acetaminophen, atenolol, atrazine, ethanol and lindane) and one neuroprotectant (mefenamic acid) were tested. We found
that the GFP-labeled ventral axons from trunk motoneurons, which were easily observed in live fry and measured for
quantification, were a highly sensitive to all of the five neurotoxins and the length of axons was significantly reduced in fry
which looked normal based on DarT endpoints at low concentrations of neurotoxins. Compared to the most sensitive
endpoints of DarT, ventral axon marker could improve the detection limit of these neurotoxins by about 10 fold. In contrast,
there was no improvement for detection of the mefenamic acid compared to all DarT endpoints. Thus, ventral axon lengths
provide a convenient and measureable marker specifically for neurotoxins. Our study may open a new avenue to use other
fluorescent transgenic zebrafish embryos/fry to develop sensitive and specific toxicological tests for different categories of
chemicals.
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Introduction

The zebrafish (Danio rerio) has been an increasingly popular

experimental model in biological research in the past two decades,

not only in developmental biology but also in medical research.

The zebrafish model has many advantages in laboratory research,

e.g. transparent embryos, high fecundity with hundreds of

embryos from each single spawning on a daily basis, low cost

and space requirement for aquarium maintenance, etc. As a

vertebrate model, the zebrafish offers more relevant information to

human health than invertebrate models such as Drosophila and

Caenorhabditis elegans [1]. Compared to in vitro cell based studies,

the zebrafish serves as an authentic in vivo model in whole-

organism physiological context. The value of the zebrafish model

has also been increasingly recognized in toxicology and environ-

mental science [2].

Now the zebrafish also emerges as an excellent toxicological

model. In 2002, Nagal has described a standard DarT (Danio rerio

Teratogenic assay), in which wild type zebrafish embryos are used

to monitor several lethal and sublethal endpoints for evaluating the

potential toxicity of chemicals at different developmental stages,

and the assay covers essentially all major organs and systems in

zebrafish [3]. Since then, it has been an established zebrafish

embryo test recommended by OECD (Organisation for Economic

Co-operation and Development) and it is also widely used in

chemical screening [4]. It is very convenient to screen zebrafish

embryos/larvae in a microtiter plate with a small quantity (i.e.,

mg/L, mg/L) of candidate chemicals. Moreover, it has the

potential to develop medium- to high-throughput screening

platforms with embryos/larvae in a single well of standard 6-,

12-, 24- or 96-well plates [5]. In recent years, the zebrafish has also

been increasingly used as a predictive model for assessing drug-

induced toxicity, including cardiotoxicity, hepatotoxicity, neuro-

toxicity and developmental toxicity assessment [4,6,7,8,9].

GFP or other fluorescent protein transgenic zebrafish have

played an important role in developmental analyses as the

fluorescence-labeled tissues and organs can be conveniently

monitored in live embryos/larvae throughout the early develop-

ment [10,11]. Now there are a large number of fluorescent

transgenic zebrafish lines available and these transgenic zebrafish

lines, including enhancer/gene trapped lines [12,13], have been

targeted for fluorescent protein expression in essentially all tissues

and organs. We envisage that the fluorescence-labeled tissues/

organs may provide a more sensitive marker than wild type

embryos/fry in toxicological and teratogenic tests. In order to

explore the potential of fluorescent transgenic zebrafish in
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toxicological tests, in the present study, we selected a GFP

transgenic zebrafish line, Tg(nkx2.2a:mEGFP), in which GFP gene

expression under the nkx2.2a promoter is specifically in the central

nervous system (CNS) and pancreas [14,15,16,17]; thus, this

transgenic line may be suitable for testing chemicals with

neurotoxicity. To test our hypothesis, we selected five neurotoxin

chemicals of different modes of action, acetaminophen, atenolol,

atrazine, ethanol and lindane (hexachlorocyclohexane), and one

neuroprotectant, mefenamic acid. After exposure of these chem-

icals to Tg(nkx2.2a:mEGFP) embryos/larvae at different concen-

trations, we found that indeed all of the neurotoxins tested caused

significant shortening of GFP-labeled axons at concentrations that

would not resulted in any observable changes of the lethal and

sublethal markers used in DarT. Thus, our study indicates that

Tg(nkx2.2a:mEGFP) zebrafish provides a more sensitive tool for

monitoring neurotoxin chemicals than wild type zebrafish.

Materials and Methods

Ethics statement
All experimental protocols were approved by Institutional

Animal Care and Use Committee (IACUC) of National University

of Singapore (Protocol 079/07).

Materials
Transgenic zebrafish line Tg(nkx2.2a:mEGFP) was kindly pro-

vided by Dr. Joan K. Heath [14,15,16,17]. Six chemicals tested in

the present study were purchased from various commercial

sources: acetaminophen (Sigma, A7085), atenolol (Sigma,

A7655), atrazine (Chem service, PS380), ethanol (Merck,

1.00983.2500), lindane/hexachlorocyclohexane (Sigma, H4500)

and mefenamic acid (Sigma, M4267).

Exposure of chemical treatment to zebrafish embryos
Homozygous Tg(nkx2.2a:mEGFP) were used to cross with wild

type fish in order to obtain 100% transgenic embryos for chemical

exposure experiments. Embryos were collected and incubated in

egg water at 28uC. Following the protocol of DarT where embryos

were transferred to test solutions about 60 minutes after initiation

of spawning [3], we standardized the chemical exposure time at

round 3 hpf by selecting alive, well developing embryos for

chemical treatment, which was carried out in 6-well plates from 3

to 120 hpf. In each well, 50 embryos were placed with 5 ml of

chemical solution. Each concentration was tested in parallel in

different wells with up to four independent replicates. The

appropriate concentrations were determined by preliminary

experiments with reference to previous publications if available.

Most of the selected concentrations were below LC50. During the

test, chemical solutions were changed every day.

Phenotypical observation
During the treatment from 3 hpf to 120 hpf (before the feeding

stage), several lethal or sublethal endpoints based on the DarT

protocol [3], including survival rates, hatching rate, edema, tail

detachment, somite formation, spontaneous movement, heart

beat, pigmentation and touch response were observed and

recorded as indicators for chemical toxicity.

Imaging and data analysis
GFP fluorescence was observed under a fluorescent microscope

(ZEISS Axiovert 200M) with a GFP filter and photographed with

a digital camera (ZEISS AxiocCam HRC). For direct comparison

in the same set of experiment, images were taken for the same

exposure time at a fixed aperture. At least 5 embryos/larvae were

randomly selected from each dosage group and photographed.

Swimming larvae were anaesthetized with 0.1% 2-phenoxyethanol

prior to photography. For length measurements of whole body,

central nervous system (CNS) and axon, ImageJ software was

used. After setting scale for each view under each magnification in

ImageJ, body length was measured as horizontal distance from the

beginning of fish head to the end of tail; CNS length was measured

as horizontal distance of GFP from brain to tail; ventral axon

length was measured as vertical distance from the ventral edge of

the spinal cord to the ventral terminal of axon labeled by GFP for

all ventral motoneuron axons from somite 5 to somite 14 for each

fry. For each treated group, at least 5 fry were measured for

statistical calculation.

Statistical methods
For each chemical concentration, there were four replicates and

each replicate had 50 embryos. Thus, 200 embryos per chemical

per dose were used. The number of embryos for each lethal or

sublethal endpoint was recorded and all values were computed

base on the original embryo number (200). P-value was calculated

by t-test among the four replicates in comparison to respective

controls. P,0.01 was considered highly significant difference and

P,0.05 significant difference from control.

Results

Evaluation of developmental toxicity with selected DarT
endpoints

Six chemicals with a range of five different concentrations were

tested, including acetaminophen (2.5, 5, 10, 20, 25 mg/L),

atenolol (1, 2.5, 5, 7.5, 10 mg/L), atrazine (1, 2, 3, 4, 5 mg/L),

ethanol (0.1%, 0.25%, 0.5%, 1%, 2%,), lindane (1.25, 2.5, 5, 10,

20 mg/L), and mefenamic acid (5, 10, 50, 100, 250 mg/L) (Table

S1). 0.01% DMSO was used as vehicle control for all of them

except for ethanol, which is water soluble and egg water was used

as the control. First, we noticed a dosage-dependent decrease of

survival rates for all of the six tested chemicals at all of the four

time points (8, 24, 48 and 96 hpf) (Figure 1), Generally, for all six

chemicals, the survival curves for the last three time points were

quite similar while the survival rates are much higher at 8 hpf,

indicating that most of mortalities occurred between 8–24 hpf. For

the highest dosage groups, 42.0–65.0% survival rates were

observed. There was also a dosage-dependent decrease hatching

rates for all six chemicals (Figure 2A), with suppression of the

hatching rates to 34%–56% in their highest concentration groups.

These observations further indicate the effectiveness of these

chemical treatments as well as the toxicity of these chemicals.

We also examined several other DarT endpoints, including tail

detachment and somite formation at 24 hpf and 48 hpf;

spontaneous movement at 24 hpf; heart beat at 48 hpf; hatching

at 96 hpf; edema, touch response and pigmentation between 90–

120 hpf (Table S1). Some examples of the abnormalities are shown

in Figure 3, such as no tail detachment (Figure 2B), no somite

formation (Figure 3C), edema (Figure 3E), light pigmentation

(Figure 3F), lack of hatching (Figure 3G), in comparison with

matched controls (Figure 3A and 3D). Statistics of some of these

abnormalities are presented in Figure 2 and all the DarT

endpoints measured are summarized in Table S1. In general,

there was a dosage-dependent effect for essentially all of the six

chemicals on all these traits except for the heartbeat rates where

acetaminophen, ethanol, lindane, and mefenamic acid caused

dosage-dependent decrease but atenolol and atrazine treatments

showed no significant change or slightly increase of heartbeat

(Fig. 2B). To evaluate the significance of difference we observed,
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T-test was used; significant difference (P = 0.01–0.05) and highly

significant difference (P,0.01) from the control groups are

indicated in Figure 2 and Table S1. Highly significant differences

for all or most of these endpoint measurements were observed only

from high dosage groups of five of these chemicals and their

starting concentrations were: 10 mg/L acetaminophen, 4 mg/L

atrazine, 0.5% ethanol, 5 mg/L Lindane and 10 mg/L mefe-

namic acid. For atenolol, most endpoints did not show significant

difference but hatching and edema appeared to be quite sensitive

indicators with the highly significant difference (p,0.01) at the

concentration of 5 and 7.5 mg/L respectively while most other

traits did not show highly significant difference even at the highest

dosage (10 mg/L) used (Table S1).

In addition, we also observed some specific effects for these

tested chemicals. Atrazine had a dosage-dependent increase of

heartbeat rate (but with a smaller magnitude of heart contraction)

while all other five chemicals caused a dosage-dependent decrease

of heartbeat (Figure 2B and Table S1). High dose ethanol led to,

obvious edema with shorter body length in a high percentage of

treated fry. High dose lindane generally resulted in coiled body

and shorter body length; when these treated were touched, they

had spiral-locally swimming pattern. For mefenamic acid, high

dose groups of fry had light or no pigmentation (Figure 3F), in

addition to high percentage of edema.

Figure 1. Survival rates of Tg(nkx2.2a:mEGFP) fry in the presence of different concentrations of testing chemicals. Survival rates at 8, 24,
48 and 96 hpf were plotted against different concentrations of the chemicals. Chemical names are indicated above each panel.
doi:10.1371/journal.pone.0055474.g001

Transgenic Zebrafish for Neurotoxin Test

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e55474



Axon length provides a more sensitive and measurable
marker for evaluation of neurotoxixity

In order to demonstrate that GFP fluorescence may provide

more sensitive markers for phenotypical changes induced by these

chemicals, GFP fluorescence was observed and photographed for

each treatment group. As reported previously [16,17], GFP

fluorescence was observed in the developing neural tube and brain

from 1 dpf. By 3 dpf, obvious GFP-labeled axons were observed

Figure 2. Summary of selected DarT endpoint measurements. (A) Hatching (96 hpf), (B) Heartbeat (48 hpf), (C, D) Tail detachment (24 hpf, 48
hpf), (E, F) Normal somite (24 hpf, 48 hpf). Names and concentrations of chemicals are indicated at the bottom of Panel F. 0.01% DMSO was used as
control except that egg water was used as control for ethanol test. Hearbeat is shown as numbers per 15-second. Statistical significance: **P,0.01;
*P,0.05.
doi:10.1371/journal.pone.0055474.g002
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from motoneurons in the trunk region. As shown in Figure 4, the

larvae in the control group (0.01% DMSO or egg water) had well

grown ventral axons. In comparison, the ventral axons were either

shortened or abolished by treatment with all of the five

neurotoxins: acetaminophen, atenolol, atrazine, ethanol and

lindane (Figure 4B–F). In contrast, the axons were largely

unaffected by the neural protectant, mefenamic acid (Figure 4G),

indicating the specific response of axon growth to neurotoxins.

To further evaluate the toxic effects of these chemicals, lengths

of anteiro-posterior body, the central nervous system (CNS) and

ventral axons were measured. Among the three lengths, only body

length measurement is in wild type larvae. As shown in Figure 5

and Table S1, only high doses of atrazine, ethanol, lindance and

mefenamic acid showed measureable difference (P = 0.01–0.05)

compared to the control groups, but only highest concentration

groups of ethanol (2%) and of mefenamic acid (100, 250 mg/L)

showed statistically highly significant difference (P,0.01). For

CNS length, only the two highest doses (20 and 25 mg/L) of

acetaminophen showed highly significant difference (P,0.01)

although other four neurotoxins, but not mefenamic acid, also

resulted in measurable shortening (P = 0.01–0.05) in their high

concentration groups.

In contrast, by measurement of axon length, we found that even

the lowest dose of all of five neurotoxins (2.5 mg/L acetamino-

phen, 1 mg/L atenolol, 1 mg/L atrazine, 0.1% ethanol, 1.25 mg/

L lindane) caused highly significant (P,0.01) shortening (Figure 5

and Table S1). Compared to the starting concentrations of highly

significant changes observed based on standard DarT endpoints

examined under a bright-field microscope, the axon length

endpoint would increase detection sensitivity by at least 2–5 fold

for the five neurotoxins. It is interesting to note that there is no

observed axon shortening from mefenamic acid treatment except

for the highest concentration groups (100 and 250 mg/L) while

other general toxicological changes (e.g. survival rates, hatching,

tail detachment, somite formation, edema etc) were observed at

much lower concentration (10 mg/L), suggesting that the short-

ened axons by mefenamic acid may be a secondary effect resulted

from other primary toxicities. These observations suggest that the

axon length is a quite sensitive and specific endpoint for testing

neurotoxicity. The axon length was generally correlated with the

lack of or abnormal touch response (Table S1), which was dosage-

dependent but an apparently less sensitive trait than axonal length.

To further determine the maximum sensitivity of using the axon

length as a biomarker for these neurotoxins, another test with

lower ranges of neurotoxin concentrations was conducted. As

shown in Figure 6, highly significant difference of measured axon

length (P,0.01) could be detected at the following lowest

concentrations: 1 mg/L acetaminophen, 0.5 mg/L atenolol,

0.5 mg/L atrazine, 0.08% ethanol and 0.5 mg/L lindane. Thus,

compared to the starting concentrations of the changes observed

based on standard DarT endpoints examined under a bright

microscope (10 mg/L acetaminophen, 5 mg/L atenolol, 4 mg/L

atrazine, 0.5% ethanol and 5 mg/L lindane (Table S1), the axon

length endpoint would increase detection of sensitivity by about 10

fold.

Discussion

In the present study, we demonstrated that the fluorescent

transgenic zebrafish Tg(nkx2.2a:mEGFP), in which the central

Figure 3. Examples of abnormal phenotypes. (A, D) Normal developing control embyors/fry in o.01% DMSO at 24 hpf (A) and 72 hpf (D); (B) No
tail detachment at 24 hpf in 20 mg/L acetaminophen; (C) No somite at 24 hpf in 25 mg/L acetaminophen; (E) Edema at 72 hpf in 20 mg/L lindane; (F)
Light pigmentation at 72 hpf in 250 mg/L mefenamic acid; (G) No hatching at 72 hpf in 10 mg/L lindane; (H) Coiled body at 96 hpf in 5 mg/L lindane.
Scale bars: 200 mm.
doi:10.1371/journal.pone.0055474.g003
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nervous system including trunk axons is marked by GFP

expression under the nkx2.2a promoter [16,17], can be used as a

highly sensitive system for testing neurotoxins, thus providing a

rapid and convenient assay to screen for neurotoxins. Previously,

Fan et al also proposed to use a quantitative RT-PCR based assay

to analyse expression of a few selected neural developmental

marker genes in early zebrafish embryos for screening of

neurotoxins and nkx2.2a is one of the markers selected [18].

Compared to the quantitative RT-PCR assay, the current

fluorescent transgenic assay has directly observable and measure-

able phenotypes in live fry and thus is convenient and rapid.

Furthermore, the fluorescent transgenic zebrafish has the potential

to develop to a high-throughput assay with possible automation

[19,20]. Recently, Kanungo and colleagues have employed

another transgenic zebrafish line, Tg(hb9:GFP), which also

expresses GFP in trunk motoneurons and axons, to develop a

neurotoxin assay by measuring axon lengths and similar results

have been reported for two neurotoxins, ketamine and alcohol

[21,22]. In Tg(nkx2.2a:mEGFP), GFP expression appears to

faithfully recapitulate the endogenous nkx2.2a expression in a

subset of oligodendrocyte lineage [16,17]. In both Tg(hb9:GFP)

and Tg(nkx2.2a:mEGFP) transgenic lines, trunk ventral axons were

used as a marker for neurotoxicity, but the GFP signal is originated

from the axon per se in Tg(hb9:GFP) embryos while it is from the

ensheathing Schwann cells in Tg(nkx2.2a:mEGFP) embryos. It

seems that the assay with Tg(nkx2.2a:mEGFP) is more sensitive than

that with Tg(hb9:GFP) as only about 20% shortening of ventral

axons was reported in Tg(hb9:GFP) by 2% alcohol [22] while in

our study with Tg(nkx2.2a:mEGFP) the same concentration of

alcohol caused 87.7% of ventral axon reduction. Previously, it has

also been reported by measuring ventral axon length for

neurotoxicity evaluation by using another GFP transgenic line,

Tg(islet1:gfp) [23], or by antibody staining of axon [24]. Thus,

measurement of axon length in zebrafish embryos is being

increasingly recognized as a standard assay for neurotoxins.

In this study, six chemicals with a range of dosages were tested

in zebrafish embryos/larvae, including acetaminophen, atenolol,

atrazine, ethanol, lindane and mefenamic acid. While two of them,

ethanol [25] and lindane [26], are widely considered to be

neurotoxins at high dose, three are candidate neurotoxins:

acetaminophen [27,28], atenolol [29] and atrazine [30,31,32].

The last one, mefenamic acid, is considered to be neuroprotectant

[33]. The five neurotoxins have different molecular modes of

action. Acetaminophen is a popular and over-the-counter drug for

treatment of headache and its main mechanism appears to be the

inhibition of cycloxygenase (COX) [34]. Atenolol is a b1-

adrenoceptor antagonist while atrazine, a widely used herbicide,

disrupts the photosystem II in plants by binding to the

plastoquinone-binding protein [35]. Ethanol is a well known

neurotoxin at high dosage through binding to acetylcholine,

GABA (gamma-aminobutyric acid), serotonin, and NMDA (N-

Methyl-D-aspartate) receptors [36,37,38]. Lindane is an organo-

chlorine chemical used as an agricultural insecticide and it

interferes with GABA neurotransmitter by interacting with the

GABA receptor-chloride channel complex [39]. Despite the

different molecular modes of these neurotoxins, they all inhibited

Figure 4. General phenotypes (left row), GFP-expressing central nervous systems (middle row) and motoneuron axons (right row)
of 80-hpf Tg(nkx2.2a:mEGFP) fry in the presence of effective concentrations of different chemicals. (A) 0.01% DMSO control, (B) 5 mg/L
Acetaminophen, (C) 2.5 mg/L Atenolol, (D) 2 mg/L Atrazine, (E) 0.5% Ethanol, (F) 1.25 mg/L Lindane and (G) 250 mg/L Mefenamic acid. Somite
numbers are indicated at the top right panel. Scale bars: 1000 mm for the left and middle rows and 100 mm for the right row.
doi:10.1371/journal.pone.0055474.g004
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axon growth in zebrafish but their inhibitory mechanisms remain

unclear and will require further studies in the future. It will also be

interesting to carry out chemical withdraw experiments to

examine the reversibility of axon growth for further understanding

of the mechanisms of these neurotoxins.

For the five neurotoxins, many studies have been conducted in

experimental animals and their toxicity in the nervous system has

been documented. Acetaminophen has also been previously tested

in zebrafish and its general effect on embryonic development,

nephrotoxicity and hepatotoxicity have been reported [27,40,41]

but its neurotoxicity has not been studied. Its direct neurotoxic

action has been recently established by both in vitro and in vivo

studies in rats and neuronal apoptosis has been observed at

concentration of 1–2 mM (150–300 mg/L) [28] Apparently the

zebrafish larvae are more sensitive to acetaminophen as significant

embryonic developmental defects were observed at concentration

of 10 mg/L while significant shortening of axon length occurred at

concentration as low as 2 mg/L. Atenolol may cause an allosteric

inhibition of voltage-gated sodium channels and blockade of

neural nitric oxide release, as reported from a study in rabbit [29].

Another study in mice shows that atenolol disrupt the positive

feedback to the central nervous system and results in a decreased

locomotor activity and background contextual fear [42]. Atrazine

has been tested in zebrafish for developmental neurotoxicity and it

increases cell death in brain and causes disorganized motor neuron

axon growth [30]. Consistent with this, a mouse study has also

indicated that early exposure to low doses of atrazine affects the

mice behavior related to neurodevelopmental disorder [32].

Alcohol abuse and its neurotoxic effect in human have been and

alcohol also causes progressive neuroinflammation and neurolog-

ical disorder [43]. In zebrafish, it has been reported that ethanol

causes abnormal development of motor neurons and muscle fibers

[25]. The neurotoxic effect of lindane has also been well

documented [26,44] and chronic exposure of low dose lindane

causes neurobehavioral, neurochemical, and electrophysiologrcal

efects in rat brain [45].

Our observations in the present study are consistent with the

general mode of the action of these six chemicals. All of the five

neurotoxins, acetaminophen, atenolol, atrazine, ethanol and

lindane, showed sensitive inhibition of axon growth. In contrast,

mefenamic acid has a significant neuroprotective effect by

inhibition of glutamate-induced cell toxicity in vitro and reduces

ischemic stroke in vivo in rats [33]. Our observation is also

consistent with its neural protectant role as the toxic concentra-

tions (10 and 50 mg/L) of mefenamic acid, which caused

statistically very significant edema, light pigmentation and shorter

body length, apparently had no effect on the axon growth.

It is apparent that all of these six chemicals show dosage-

dependent toxicity in essentially all the endpoints observed (Table

S1). In the present study, we demonstrated that, compared to the

recommended DarT endpoints, axon length, which can be

observed and measured in Tg(nkx2.2a:mEGFP) fry, is about 10

fold more sensitive than the most sensitive endpoints recom-

mended in DarT. Thus, with the ease and direct observable

features of GFP expression, the Tg(nkx2.2a:mEGFP) transgenic

zebrafish provides a convenient and highly sensitive tool for

screening and testing neurotoxic compounds, which will be

applicable in environmental monitoring and pharmaceutical

production. As there are a large number of fluorescent transgenic

zebrafish with fluorescent protein reporter gene expression in

specific organs and tissues [10,11], our study may open a new

avenue to test other useful fluorescent transgenic zebrafish for

development of specific toxicological assays for different categories

of chemicals. In particular, as exampled here, all of the

toxicological assays in fluorescent transgenic zebrafish can be

accomplished within 5 days after fertilization and before feeding

stage, which is considered an in vivo test system alternative to adult

animals, thus reducing the use of animals in toxicological tests.

Supporting Information

Table S1 Comparison of sensitivity of lethal and
sublethal DarT endpoints and axon length measure-
ments in Tg(nkx2.2a:mEGFP) the treatment.

(DOCX)

Figure 5. Body length, CNS length and axon length of Tg(nkx2.2a:mEGFP) fry in the presence of variable chemicals. (A–C) Examples of
measurements of body length (A), CNS length (B) and axon length (C). The measured lengths are indicated by double arrow lines. Scale bars: 1000 mm
in (A.B) and 100 mm in (C). (D) Histograms of body length, CNS length and axon length. Chemical names and concentrations are indicated on the left.
Statistical significance: **P,0.01; *P,0.05.
doi:10.1371/journal.pone.0055474.g005

Figure 6. Lowest effective concentrations of neurotoxins for
shortening of motoneuron axons.
doi:10.1371/journal.pone.0055474.g006
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