1,057 research outputs found

    Sensitivity of Southern Ocean overturning to wind stress changes:Role of surface restoring time scales

    Get PDF
    The influence of different surface restoring time scales on the response of the Southern Ocean overturning circulation to wind stress changes is investigated using an idealised channel model. Regardless of the restoring time scales chosen, the eddy-induced meridional overturning circulation (MOC) is found to compensate for changes of the direct wind-driven Eulerian-mean MOC, rendering the residual MOC less sensitive to wind stress changes. However, the extent of this compensation depends strongly on the restoring time scale: residual MOC sensitivity increases with decreasing restoring time scale. Strong surface restoring is shown to limit the ability of the eddy-induced MOC to change in response to wind stress changes and as such suppresses the eddy compensation effect. These model results are consistent with qualitative arguments derived fromresidual-mean theory andmay have important implications for interpreting past and future observations

    Machine learning-based evaluation of spontaneous pain and analgesics from cellular calcium signals in the mouse primary somatosensory cortex using explainable features

    Get PDF
    IntroductionPain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a “black box”, where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations.MethodWe focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states.Results and discussionThe ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation

    Spin Transfer Torque and Tunneling Magnetoresistance Dependences on the Finite Bias Voltages and Insulator Barrier Energy

    Full text link
    We investigate the dependence of perpendicular and parallel spin transfer torque (STT) and tunneling magnetoresistance (TMR) on the insulator barrier energy in the magnetic tunnel junction (MTJ). We employed single orbit tight binding model combined with the Keldysh non-equilibrium Green's function method in order to calculate the perpendicular and parallel STT, and TMR in MTJ with the finite bias voltages. The dependences of STT and TMR on the insulator barrier energy are calculated for the semi-infinite half metallic ferromagnetic electrodes. We find that perfect linear relation between the parallel STT and the tunneling current for the wide range of the insulator barrier energy. Furthermore, the TMR also depends on the insulator barrier energy, which contradicts to the Julliere's simple model

    The Spatial Cross-Correlation Method for Dispersive Surface Waves

    Get PDF
    Dispersive surface waves are routinely used to estimate the subsurface shear-wave velocity distribution, at all length scales. In the well-known Spatial Autocorrelation method, dispersion information is gained from the correlation of seismic noise signals recorded on the vertical (or radial) components. We demonstrate practical advantages of including the cross-correlation between radial and vertical components of the wavefield in a spatial cross-correlation method. The addition of cross-correlation information increases the resolution and robustness of the phase velocity dispersion information, as demonstrated in numerical simulations and a near-surface field study with active seismic sources, where our method confirms the presence of a fault-zone conduit in a geothermal field

    Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom

    Get PDF
    Determining the mechanism of action of antimicrobial peptides (AMPs) is critical if they are to be developed into the clinical setting. In recent years high resolution techniques such as atomic force microscopy (AFM) have increasingly been utilised to determine AMP mechanism of action on planar lipid bilayers and live bacteria. Here we present the biophysical characterisation of a prototypical AMP from the venom of the North African scorpion Scorpio maurus palmatus termed Smp24. Smp24 is an amphipathic helical peptide containing 24 residues with a charge of + 3 and exhibits both antimicrobial and cytotoxic activity and we aim to elucidate the mechanism of action of this peptide on both membrane systems. Using AFM, quartz crystal microbalance-dissipation (QCM-D) and liposomal leakage assays the effect of Smp24 on prototypical synthetic prokaryotic (DOPG:DOPC) and eukaryotic (DOPE:DOPC) membranes has been determined. Our data points to a toroidal pore mechanism against the prokaryotic like membrane whilst the formation of hexagonal phase non-lamellar phase structures is seen in eukaryotic like membrane. Also, phase segregation is observed against the eukaryotic membrane and this study provides direct evidence of the same peptide having multiple mechanisms of action depending on the membrane lipid composition

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Law and Family Formation Among LGBQ-Parent Families

    Get PDF
    This article addresses how the law affects family formation among families with lesbian, gay, bisexual, and queer (LGBQ) parents in the United States. Our discussion draws on a socio-legal approach to law that focuses not only on the law on the books (what we refer to as “legal barriers”) but also on issues like how the law is practiced, how people experience the law in everyday life, and how the law serves as an interpretive framework through which people understand themselves and their families (what we refer to as “social barriers”). In our review, we highlight how attorneys can play a role in valuing and advancing rights for LGBQ-parent families and LGBTQ prospective parents

    Spin transport and spin torque in antiferromagnetic devices

    Get PDF
    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices
    corecore