12 research outputs found

    Bandwidth Extension of Ultra-wideband Microstrip Antenna Using Metamaterial Double-side Planar Periodic Geometry

    Get PDF
    A compact extended bandwidth UWB microstrip antenna is designed utilizing metamaterial (MTM) double-side planar periodic structures. The proposed antenna comprises two MTM unit cells made by etching X-shaped slots on the main radiating patch, and four slots at the vertices of a square periodically repeated in two-dimensions on the ground plane. The proposed antenna fabricated on 1.6 mm low-cost FR4 substrate is compact, measuring 27.6 mm ×32 mm, with relative permittivity of 4.5 and loss tangent of 0.02. It has broad bandwidth covering 3.2 to 23.9 GHz, with a peak gain of 6.2 dB at 8.7 GHz. The antenna has good radiation characteristics for UWB applications. The measured return loss (S11) of the test antenna fabricated for this study was in good agreement with the simulated results

    Programmable Beam-Steering Capabilities Based on Graphene Plasmonic THz MIMO Antenna via Reconfigurable Intelligent Surfaces (RIS) for IoT Applications

    Get PDF
    The approaching sixth-generation (6G) communication network will modernize applications and satisfy user demands through implementing a smart and reconfigurable system with a higher data rate and wider bandwidth. The controllable THz waves are highly recommended for the instantaneous development the new technology in wireless communication systems. Recently, reconfigurable intelligent surfaces (RIS), also called codded/tunable programmable metasurfaces, have enabled a conspicuous functionality for THz devices and components for influencing electromagnetic waves (EM) such as beam steering, multi-beam-scanning applications, polarization variation, and beam focusing applications. In this article, we proposed a graphene plasmonic two-port MIMO microstrip patch antenna structure that operates at a 1.9 THz resonance frequency. An E-shape MTM unit cell is introduced to enhance the isolation of the antenna from −35 dB to −54 dB. An implementation of controllable and reconfigurable surfaces based on graphene meta-atoms (G-RIS) placed above the radiating patches with a suitable separated distance to control the radiated beam to steer in different directions (±60°). The reconfigurable process is carried out via changing the (ON/OFF) meta-atoms states to get a specific code with a certain beam direction. The gain enhancement of the antenna can be implemented through an artificial magnetic conductor (AMC) based on graphene material. The G-AMC layer is located underneath the (MIMO antenna, G-RIS layer) to improve the gain from 4.5 dBi to 10 dBi. The suggested antenna structure results are validated with different techniques CST microwave studio and ADS equivalent circuit model. The results have asymptotic values. So, the proposed design of the MIMO antenna that is sandwiched between G-RIS and G-AMC is suitable for IoT applications

    Highly efficient GaN Doherty power amplifier for N78 sub-6 GHz band 5G applications

    Get PDF
    In this paper, a high-efficiency GaN Doherty power amplifier (DPA) for 5G applications in the N78 sub-6 GHz band is introduced. The theoretical analysis of the matching networks for the peak and carrier transistors is presented, with a focus on the impact of unequal power splitting for both transistors and the recommendation of a post-harmonic suppression network. The proposed design features an unequal Wilkinson power divider at the input and a post-harmonic suppression network at the output, both of which are crucial for achieving high efficiency. The Doherty power amplifier comprises two GaN 10 W HEMTs, measured across the 3.3 GHz to 3.8 GHz band (the N78 band), and the results reveal significant improvements in gain, output power, drain efficiency, and power-added efficiency. Specifically, the proposed design achieved a power gain of over 12 dB and 42 dBm saturated output power. It also achieved a drain efficiency of 80% at saturation and a power-added efficiency of 75.2%. Furthermore, the proposed harmonic suppression network effectively attenuated the harmonics at the output of the amplifier from the second to the fourth order to more than −50 dB, thus enhancing the device’s linearity

    MTM-Inspired Graphene-Based THz MIMO Antenna Configurations Using Characteristic Mode Analysis for 6G/IoT Applications

    No full text
    6G wireless communications will be immersed in the future with different applications. It is expected to support all IoT services and satellite communications, and it is expected to support artificial intelligence (AI) and machine learning (ML). The THz frequency band has a vital role in 6G communication. In this study, a new graphene plasmonic two-port Terahertz (THz) MIMO antenna is analyzed by the characteristic mode theory (CMA), which gives a better insight into the physical behavior of the MIMO configurations. The proposed MIMO antenna is compact and designed on a Teflon substrate of 130 × 85 µm2. The antenna provides a wide impedance bandwidth of 0.6 THz (3.2–3.8 THz). The CMA is applied to clarify the position at which the mutual coupling gives a maximum concentrated current distribution. It is mainly used to reveal the preferable MIMO antenna configuration by the usage of the model significant and model current distribution property. To reduce the mutual coupling between the radiating elements, a complementary dumbbell-structure Metamaterial (MTM) unit cell is etched in the ground plane to block the coupling mode without any affection on the dominant mode. The preferred MIMO configuration gives high isolation of −55 dB between the radiating patches. The fundamental characteristics have been discussed in detail. The proposed MIMO design offers several attractive features such as large bandwidth of 0.6 THz, low envelope correlation coefficient (ECC) of 0.000168, compact size, stable radiation, high gain of 7.23 dB, and low channel capacity loss (CCL) of 0.006. The proposed MIMO design is suitable for different applications in the THz band according to the high-performance parameters such as biomedical applications, security scanning, sensing, IoT, and 6G high-speed wireless communication systems

    Design and Modeling of Ultra-Compact Wideband Implantable Antenna for Wireless ISM Band

    No full text
    This paper proposes a wideband ultra-compact implantable antenna for a wireless body area network (WBAN). The proposed patch antenna works in the industrial, scientific, and medical (ISM) bands. The proposed patch antenna with an ultra-compact size (5 × 5 × 0.26 mm3) was designed with 29% wide bandwidth (about 670 MHz). This wide bandwidth makes the antenna unaffected by implantation in different human body parts. The miniaturization process passed many steps by adding many slots with different shapes in the radiating element as well as in the ground plane. A 50 Ω coaxial feeding excites the antenna to maintain matching and low power loss. The specific absorption rate (SAR) was calculated for health considerations. The result was within the standard limits of IEEE organizations and the International Commission on Non-Ionizing Radiation Protection (ICNRP). The antenna was tested in tissues with multiple layers (up to seven layers) and at various depths (up to 29 mm). The link margin was calculated, and the proposed antenna enables 100 Kbps of data to be transferred over a distance of 20 m and approximately 1 Mbps over a distance of 7 m. The proposed antenna was fabricated and tested. The measured S11 parameters and the simulated results using the Computer Simulation Technology (CST Studio) simulator were in good agreement

    Delaying surgery for patients with a previous SARS-CoV-2 infection

    Get PDF
    Not availabl

    Elective Cancer Surgery in COVID-19–Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study

    No full text

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore