92 research outputs found

    The Singlet-Triplet Pseudo-Jahn-Teller Centers in Copper Oxides

    Full text link
    One of the most exciting features of the hole centers CuO_{4}^{5-} in doped cuprates is an unusually complicated ground state which is the result of the electronic quasi-degeneracy. An additional hole, doped to the basic CuO_{4}^{6-} cluster with the b_{1g} hole can occupy both the same hybrid Cu3d-O2p orbital state resulting in a Zhang-Rice singlet ^1A_{1g} and the purely oxygen e_u molecular orbital resulting in a singlet or triplet ^{1,3}E_u term with the close energies. We present detailed analysis of the (pseudo)-Jahn-Teller effect driven by the near-degeneracy within the (^1A_{1g},^{1,3}E_u)-manifold.Comment: RevTex, 20 pages, 8 figures; to be published in J.Phys.Chem.So

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions

    Full text link
    We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically induced transparency (EIT). In particular, we study the regime of efficient nonlinear conversion with low-intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear interaction Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics this Hamiltonian does not have a power expansion in the fields and the conversion length increases with the input power. We analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical analysis for up to 10310^3 input photons and compare the results with a mean-field approach. Due to quantum effects, complete conversion from the two pump fields into the signal and idler modes is achieved only asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and idler fields are perfectly quantum correlated which has potential applications in quantum communication schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum computation.Comment: 10 pages, 11 figure

    Investigating sociophysical attributes underlying train boarding efficiency and their importance for nudging

    Get PDF
    Nudging has become a popular method to change the behavior of pedestrians in public spaces. However, nudges often do not work as intended because they are based on an incomplete understanding of the nudging environment, physical (e.g., pedestrian trajectories), but not psychological data is used in their development, and behavioral theories are often inadequate or not (correctly) applied. In this article, we argue that the design of nudges can benefit from complementary psychological data analyzed using relevant social and environmental psychological theories. Adequate theories, we argue, are those that aim at describing the objective (i.e., person independent) attributes of the environment or situation and how these affect human decision-making. Using the example of train boarding, and in particular the formation of the deboarding corridor, we demonstrate how psychological theories like interdependence theory and social norms theory can be applied to relevant psychological data—in our case obtained with two focus groups—to better characterize the sociophysical attributes of the train boarding situation. The focus group, or sometimes called a “group discussion”, is a qualitative research method in which data is generated from guided discussions amongst research participants following pre-defined discussion topics. Based on the thematic analysis of the focus group data, we find that a high level of competition and interdependence are related to structural aspects of the train boarding situation. Subsequently, we use these insights to provide tentative explanations for, or hypotheses about micro- and macroscopic behavior patterns observed during train boarding. Finally, we discuss how these insights, in turn, can inform the design of nudges that can be further investigated in future research.</p

    Retrospective source attribution for source-oriented sampling

    Full text link
    Previous work successfully implemented a novel system that uses a single particle mass spectrometer to conditionally sample size-segregated, source-oriented particles from the ambient atmosphere in real-time. The underlying hypothesis is that the composition of individual particles is a metric of particle source and thus sampling particles based on composition should be synonymous with sampling based on source. System operation relies on real-time pattern recognition to control the actuation of different ChemVol samplers, where each ChemVol is associated with a unique composition signature. In the current work, a synthesis of data collected during these studies is used in retrospect to reconcile the actual source combinations contributing to the particles collected by each ChemVol. Source attribution is based on correlations between ChemVol sampling periods and coincident wind direction and temporal emissions patterns, coupled to knowledge of single particle composition and surrounding sources. Residential and commercial cooking, vehicular emissions, residential heating and highly processed regional background PM were identified as the major sources. Results show that real-time patterns in single particle mixing state correctly identified specific sources and that these sources were successfully separated into different ChemVols for both summer and winter seasons

    Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    Get PDF
    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
    corecore