128 research outputs found

    Indirect measurement of pinch and pull forces at the shaft of laparoscopic graspers

    Get PDF
    The grasping instruments used in minimally invasive surgery reduce the ability of the surgeon to feel the forces applied on the tissue, thereby complicating the handling of the tissue and increasing the risk of tissue damage. Force sensors implemented in the forceps of the instruments enable accurate measurements of applied forces, but also complicate the design of the instrument. Alternatively, indirect estimations of tissue interaction forces from measurements of the forces applied on the handle are prone to errors due to friction in the linkages. Further, the force transmission from handle to forceps exhibits large nonlinearities, so that extensive calibration procedures are needed. The kinematic analysis of the grasping mechanism and experimental results presented in this paper show that an intermediate solution, force measurements at the shaft and rod of the grasper, enables accurate measurements of the pinch and pull forces on tissue with only a limited number of calibration measurements. We further show that the force propagation from the shaft and rod to the forceps can be approximated by a linear two-dimensional function of the opening angle of the grasper and the force on the rod

    IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation

    Get PDF
    T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm-family-deficient mice, but not Ifitm3-deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL-27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The evolution of genomic imprinting:Theories, predictions and empirical tests

    Get PDF
    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues’ kinship theory; Day and Bonduriansky’s sexual antagonism theory; and Wolf and Hager’s maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted

    Optische Charakterisierung von Fluorescein in vitro und ex vivo

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.2514/6.2008-6273AIAA/AAS Astrodynamics Specialist Conference and Exhibit ; Paper no. AIAA-2008-6273, Honolulu, Hawaii, 2008Trajectory optimization is an open-loop optimal control problem. The necessary conditions for optimal control are easy to generate by way of Pontryagin's Principle. Although these necessary conditions are powerful analysis tools, the curse of complexity has long been a major obstacle to solving the resulting boundary value problem. The Convector Mapping Principle overcomes this curse by implying that an optimal control problem is solvable if idealization is commuted with discretization. This solvability is predicated through two notions of convergence: one related to the solution and another to the algorithm. We design an elastic programming technique to exploit the divergences between these two notions of convergence while harnessing their coupling to propel a spectral algorithm. The combination of these concepts generates a globally convergent algorithm under mild conditions. In meeting the mild assumptions required of this guess-free optimization technique, the problem must be reasonably bounded and reasonably scaled. Both these requirements can be easily met for a very large family of practical problems in engineering through a new computational interpretation of the adjoins that provides useful equations for balancing the primal problem.NAApproved for public release; distribution is unlimited
    corecore