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Guess-Free Trajectory Optimization

I. Michael Ross∗ and Qi Gong†

Trajectory optimization is an open-loop optimal control problem. The necessary condi-
tions for optimal control are easy to generate by way of Pontryagin’s Principle. Although
these necessary conditions are powerful analysis tools, the “curse of complexity” has long
been a major obstacle to solving the resulting boundary value problem. The Covector Map-
ping Principle overcomes this curse by implying that an optimal control problem is solvable
if dualization is commuted with discretization. This solvability is predicated through two
notions of convergence: one related to the solution and another to the algorithm. We de-
sign an elastic programming technique to exploit the differences between these two notions
of convergence while harnessing their coupling to propel a spectral algorithm. The combi-
nation of these concepts generates a globally convergent algorithm under mild conditions.
In meeting the mild assumptions required of this guess-free optimization technique, the
problem must be reasonably bounded and reasonably scaled. Both these requirements can
be easily met for a very large family of practical problems in engineering through a new
computational interpretation of the adjoints that provides useful equations for balancing
the primal problem.

I. Introduction

One of the main problems in the theory, design and implementation of any algorithm is its starting point or
guess. Roughly speaking, the starting point problem can be stated as follows: if the guess or the starting point
is close to the optimal solution, the algorithm converges; if it is far, the algorithm may not converge. One of
the most basic mathematical proofs of this convergence result is the Newton-Kantorovich Theroem.1,2 Over
the last two decades, there has been significant progress within the optimization community in globalization
techniques:3,4 that is, techniques that facilitate convergence of the algorithm from arbitrary starting points.
Such an algorithm is said to be globally convergent. In trajectory optimization, yet another notion of
convergence is required. This is the notion of solution convergence5 – that is, the requirement that the
computed solution converge to the optimal solution. The absence of this notion of convergence or its
demonstration in practical problems may lead some practitioners to false claims of optimality.

Historically, trajectory optimization problems have had convergence problems because a number of ad-
ditional issues, the most famous of these being Bellman’s “curse of dimensionality.” Over the last decade,
significant strides in trajectory optimization has been made, in part by major advances in pseudospectral
(PS) methods.6 The flight implementation of PS methods7–9 for maneuvering the International Space Station
illustrates the high confidence that operators and practitioners have bestowed on its demonstrable conver-
gence properties. In certain applications, PS methods already exhibit global convergence properties. For
instance, in Ref. [10], Ross and Fahroo showed that PS methods converge to the optimal solution for various
formulations of a robotics problem from randomly chosen starting points. Emboldened by such numerical
studies, we describe and demonstrate some new ideas that have the effect of eliminating the guessing prob-
lem in trajectory optimization. Our proposed algorithm integrates a number of recent advances that have
occurred in both mathematical programming techniques and PS methods. In particular, an elastic program-
ming concept is incorporated as part of the spectral algorithm to push an arbitrary starting point into a
region that is closer to the optimal point. Under a reasonable bound assumption (explained in Sec. IV), the
algorithm displays the properties of robustness with respect to the starting point. This robustness property
is exploited to design a guess-free trajectory optimization algorithm.
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It is important to note the guess-free spectral algorithm is applicable only over the “space” of trajectory
optimization problems and not over the space of all optimization problems. That is, trajectory optimization
problems are not merely large-scale optimization problems; the continuity of time and the structure of the
constraints can be used to tailor optimization algorithms to solve trajectory problems. In PS methods,
the discrete optimization problem preserves the algebraic and geometric structure of the continuous-time
problem10 and this specific structure can be exploited to good use in conjunction with the relatively low-
scale optimization problem produced by PS discretization. Thus, by tailoring and adapting globalization
techniques developed in the optimization community to a class of PS-structured optimization problems, we
achieve robustness, and hence a guess-free trajectory optimization algorithm.

II. The Curse of Complexity

Trajectory optimization problems are essentially open-loop optimal control problems. A basic open-
loop optimal control problem can be defined as follows: Find the state-control function pair, t 7→ (x, u) ∈
(RNx × RNu), and clock times, t0, and tf , that

(B)





Minimize J [x(·),u(·), t0, tf ]

= E(x0,xf , t0, tf ) +
∫ tf

t0

F (x(t), u(t)) dt

Subject to ẋ(t) = f(x(t),u(t))
e
(
x0, xf , t0, tf

)
= 0

h(x(t),u(t)) ≤ 0

where, x0 = x(t0),xf = x(tf ), and all the relevant relationships are assumed to be true for almost all t. It
is assumed that all the nonlinear functions, F , E, f , e, and h, are continuously differentiable with respect
to their arguments and that their gradients are Lipschitz continuous over the domain.

The necessary conditions for Problem B can be articulated in terms of a boundary value problem which
is, more formally, a problem of solving a generalized equation.11 We refer to this process as dualization, and
it can be summarized12 as Problem Bλ:

(Bλ)





Find [x(·), u(·), t0, tf ; λ(·), µ(·), ν]
Such that ẋ(t) = f(x(t), u(t))

e
(
x0, xf , t0, tf

)
= 0

h(x(t), u(t)) ≤ 0

λ̇(t) = −∂H[t]
∂x

∂H

∂u
= 0

{λ(t0), λ(tf )} =
{
− ∂E

∂x0
,

∂E

∂xf

}

{H[t0],H[tf ]} =
{

∂E

∂t0
,− ∂E

∂tf

}

0 ≤ µ(t) ⊥− h(x(t), u(t)) ≥ 0

where H is the Lagrangian of the Hamiltonian,

H(λ, µ,x,u) := H(λ, x, u) + µT h(x, u) (1)

H is the control Hamiltonian,
H(λ,x,u) := F (x, u) + λT f(x, u) (2)

E is the endpoint Lagrangian,

E(ν,x0,xf , t0, tf ) := E(x0, xf , t0, tf ) + νT e(x0, xf , t0, tf ) (3)

and the shorthand notation, H[tf ] is used to imply,

H[tf ] ≡ H(λ(tf ),µ(tf ), x(tf ),u(tf ))
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Figure 1. Pontryagin lift of an optimal control problem.

This so-called Pontryagin “Lift” is illustrated in Fig. 1. The premise of using the necessary conditions as
a problem solving tool is that it is easier to solve a “larger” problem (namely Problem Bλ) in the primal-
dual space than the “smaller” primal problem. This is somewhat true from an analytical point of view;
however, solving an open-loop optimal control problem by numerically solving for the necessary conditions
— sometimes called an “indirect” method — has well-known difficulties13 that can be encapsulated as14

the “curse of complexity.” Similar to the curse of dimensionality,15 this problem is fundamental and not
technological as the following example14 illustrates:

x = [x] u = [u] U = R



Minimize J [x(·), u(·)] =
∫ tf

0

u2

2
dt

Subject to ẋ(t) = ax(t)
x0 = x0

tf = 1

(4)

From Pontryagin’s Principle, the adjoint equation is λ̇ = −aλ; hence, we have a system of differential
equations, (

ẋ

λ̇

)
=

(
a 0
0 −a

)(
x

λ

)
(5)

that constitutes a Hamiltonian system. These equations form an unstable system as it has one pole in the
right-half plane (and another one in the left-half plane). Thus, if the state dynamics is dissipative (i.e.,
a < 0), the adjoint system exhibits an exponential growth. Conversely, if the adjoint system is stable (i.e.
a > 0) then the state is unstable.

The exact solution of the state-costate pair is given by,

φ(t; t0, x0) = x0e
a(t−t0) (6)

ψ(t; t0, λ0) = λ0e
−a(t−t0) (7)

Replacing x0 by x0 + εx and λ0 by λ0 + ελ, we get the exact solution for the perturbed system,

φε(t; t0, εx) = (x0 + εx)ea(t−t0) (8)
ψε(t; t0, ελ) = (λ0 + ελ)e−a(t−t0) (9)

Now suppose we had an error in just the initial condition but somehow managed to get an exact propagation;
then, the errors would propagate as,

δx := φε(t; t0, εx)− φε(t; t0, 0) = εxea(t−t0)

δλ := ψε(t; t0, ελ)− ψε(t; t0, 0) = ελe−a(t−t0)
(10)

Thus, if a < 0, a small error in the initial condition in the state decreases exponentially in time (good news)
while the corresponding error in the costate increases (bad news). On the other hand, if a > 0, the situation
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is reversed. Thus, it is impossible to simultaneously control the error growth in the state-costate pair. This
difficulty is more revealing from the observation,

δx δλ = εx ελ

which indicates that the “error area” is preserved under perfect integration. Thus, reducing one side of the
error rectangle ensures the elongation of the other – this is the well-known property associated with the
symplectic structure of all Hamiltonian systems. Note that this analysis is independent of any numerical
propagation scheme. A practical numerical integration scheme on a digital computer would guarantee this
problem. This is because even if the values of x0 and λ0 were known exactly, a numerical propagation scheme
would automatically introduce εx and ελ in the immediate next step of the integration cycle as a result of
machine errors (round-off) and truncation errors (in the integration scheme). Thus, the reality is actually
worse than Eq.(10), and then even more so, because numerical propagation errors are cumulative.

It is apparent that the difficulties encountered in solving the Hamiltonian system (such as Eq. (5))
are a direct consequence of its symplectic structure. This is why solving a Hamiltonian boundary value
problem has an inherent “curse of complexity” that cannot be overcome.14 We hasten to note that while
symplectic integrators16 avoid this problem in principle, they are not universal. That is, a proper application
of symplectic integrators requires a careful analysis of the poles of the system, and these poles are not
guaranteed to stay on one side of the plane (e.g. left side) as the integration proceeds. This is why the curse
of complexity remains as a general principle, and is illustrated in Fig. 2.
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(curse of complexity) 

convergence ?

Figure 2. The curse of complexity in an “indirect” method.

III. Pseudospectral Methods

Solving optimal control problems using approximation methods goes back to the days of Bernoulli and
Euler and the founding of optimal control theory itself.17–20 In this context, PS methods can be described
as modernized versions of the “lost” principles originally laid our by Bernoulli and Euler.

A. Approximation of Functions, Derivatives and Integrals

The key to our proposed theory is the use of weighted interpolants of the form,6,21,22

y(t) ≈ yN (t) =
N∑

j=0

W (t)
W (tj)

φj(t)yj , a ≤ t ≤ b (11)

where y(t) is an arbitrary function. Here the nodes tj , j = 0, ..., N are a set of distinct interpolation nodes
(defined later) on the interval [a, b], the weight function W (t) is a positive function on the interval, and
φj(t) is the Nth− order Lagrange interpolating polynomial that satisfies the relationship φj(tk) = δjk. This
implies that

yj = yN (tj), j = 0, ...N. (12)

An expression for the Lagrange polynomial can be written as23

φj(t) =
gN (t)

g′N (tj)(t− tj)
, gN (t) =

N∏

j=0

(t− tj). (13)
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One important tenant of PS approximation of functions is that differentiation of the approximated functions
can be performed by differentiation of the interpolating polynomial,

dyN (t)
dt

=
N∑

j=0

yj

W (tj)
[W ′(t)φj(t) + W (t)φ′j ]

Since only the values of the derivative at the nodes ti are required for PS methods, then we have,

dyN (t)
dt

∣∣∣∣
ti

=
N∑

j=0

yj

W (tj)
[W ′(ti)δij + W (ti)Dij ] =

N∑

j=0

Dij [W ]yj (14)

where we use Dij [W ] as a shorthand notation for the W -weighted differentiation matrix,

Dij [W ] :=
[W ′(ti)δij + W (ti)Dij ]

W (tj)
(15)

and Dij is usual unweighted differentiation matrix given by,

Dij :=
dφj(t)

dt

∣∣∣∣
t=ti

(16)

Thus, when W (t) = 1, we have
Dij [1] = Dij (17)

From Eq. (13), the unweighted differentiation matrix, Dij = φ′j(ti), has the form,

Dij =





g′N (ti)
g′N (tj)

1
(ti − tj)

, i 6= j

g′′N (ti)
2g′N (ti)

, i = j

(18)

These equations are the general representations of the derivative of the Lagrange polynomials evaluated at
arbitrary interpolation nodes. Thanks to Runge, it is well-known24 that an improper selection of the grid
points can lead to disastrous consequences. In fact, a uniform distribution of grid points is the worst possible
choice for polynomial interpolation and hence differentiation. On the other hand, the best possible choice
of grid points for integration, differentiation and interpolation of functions are Gaussian quadrature points.
Consequently, all PS methods use Gaussian quadrature points.

As an example of the preceding ideas, in the Legendre PS method, the grid points are the shifted Legendre-
Gauss-Lobatto (LGL) points where the “shift” is achieved by mapping the physical domain, [t0, tf ] 3 t, to
a computational domain, [−1, 1] 3 τ , by the affine transformation,

τ(t) =
2 t− (tf + t0)

(tf − t0)

where we have abused notation in using τ to imply both the transformation as well as the transformed
variable. The LGL weights and the differentiation matrix are,

wk :=
tf − t0

N(N + 1)
1

[LN (τk)]2
k = 0, 1, . . . , N

DN
kl :=

2
tf − t0





LN (τk)
LN (τl)

. 1
τk−τl

k 6= l

−N(N+1)
4 k = l = 0

N(N+1)
4 k = l = N

0 otherwise

where τk, k = 0, 1, . . . , N denote the LGL nodes23 and LN (t) denotes the Legendre polynomial of order N .
In the following sections we will denote by [yk] the collection of the discretized continuous-time variable

for k = 0, . . . , N .
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B. Pseudospectral Relaxation

Let

xN (t) :=
N∑

l=0

xlφl(t), uN (t) :=
N∑

l=0

ulφl(t), (19)

where xl, ul, l = 0, . . . , N solve the “relaxed” discretized problem,

BN (εN )





Minimize JN ([xk], [uk], t0, tf ] =

E(x0, xN , t0, tf ) +
N∑

l=0

F (xl, ul)wl

Subject to f(xk, uk)−
N∑

l=0

Dklxl ∈ εNx

e
(
x0,xf , t0, tf

) ∈ εNe

h(xk, uk) ∈ (−∞, εNh
]

k = 0, 1, . . . , N

where εNz , z = x, e, h are epsilon sets,

εNz =
{

ε ∈ RNz
++ : ‖ε‖∞ ≤ εN

}
(20)

where εN > 0 is the relaxation parameter whose implications will be apparent shortly. Strictly speaking, we
must write εNz as εNz (εN ) to indicate that it is a set-valued map; however, for the purpose of notational
simplicity, we avoid this elaboration.

As noted in Section I and elsewhere,25 it is critical to guarantee the existence of a solution to the
discretized problem if a solution to the original problem (Problem B) exists. The early theory of PS methods
for optimal control was based on setting εN = 0. Since it is impossible to set εN = 0 on a digital computer,
the prevailing wisdom was to set it equal to as small a number as possible. The counter example in Ref. [25]
shows that by setting εN too small may actually result in an infeasible set for the discretized problem. Similar
counter examples have been developed by Mordukhovich18 for Euler (and hence, Runge-Kutta) methods.
Setting εN too large to “fix the problem” will render the discrete solution infeasible with respect to the
original continuous-time problem. Such results have shown that the theory for PS optimal control cannot
be directly “lifted” from its corresponding theory employed to solve fluid mechanics problems.23 In other
words, it was necessary to develop a new theory for PS methods to handle the various nuances of optimal
control theory.

C. Existence and Convergence

Recent results on PS optimal control25–27 demonstrate a strong relation between the number of nodes and
the relaxation parameter εN . The result, posited in the form of the following lemma, not only closes
the gap between theory and practice, it also clarifies a number apparent anomalies in the practice of PS
discretizations.

Lemma 1 26[Existence] Given any feasible solution, t 7→ (x, u), for Problem B, suppose x(·) ∈ Wm,∞ with
m ≥ 2. Then, there exists a positive integer Nε such that, for any N > Nε, the feasible set of relaxed
discretized problem (Problem BN (εN )) is nonempty.

The Lemma theoretically guarantees the well-posedness of PS optimal control methods. It is also a key
result that will be used later to construct the spectral algorithm. Although Lemma 1 is revealing, it does
not yet complete the practical foundation in solving the optimal control problem since we need a connection
between a discretized solution, (xl,ul), and the typically-unknown optimal solution, (x∗(tl), u∗(tl)). This
connection, obtained in Refs. [25–27] ensures the convergence of xl to x∗(tl), in addition to the convergence
of the controls as well as the dual variables under the following assumption (for the purposes of brevity, we
state the conditions for only the state and control variables):
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Assumption 1 It is assumed that the sequence {x0}N has a limit point as N →∞. Furthermore, there
exist continuous functions q(t) ∈ RNx , u∞(t) ∈ RNu such that

lim
N→∞

(ẋN (t), uN (t)) = (q(t), u∞(t)) (21)

uniformly on t ∈ [−1, 1], where (xN (t), uN (t)) are defined in (19).

Theorem 1 26[Convergence] Under A1, there exists an optimal solution, (x∗(·),u∗(·)), to Problem B such
that the following limits converge uniformly for 0 ≤ k ≤ N .

lim
N→∞

(x∗k − x∗(tk)) = 0

lim
N→∞

(u∗k − u∗(tk)) = 0

From this theorem, it is apparent that if the the relaxation parameter εN is chosen to be some fixed constant
independent of N , then convergence to the optimal solution is not guaranteed. In other words, if εN is too
large, we do not have convergence, and if εN is too small for a given N , we may have an infeasible discretized
space (by Lemma 1). Thus, from an algorithmic perspective, we must choose the relaxation parameter εN to
vary inversely as some power of N . The exact nature of the choice of this variation will be discussed shortly
but it is apparent that our proposed scheme is a spectral analog of the notion of consistent approximations
discussed in Refs. [17, 18,28].

IV. Integrating the Concepts

For a guess-free method to work properly, the continuous-time optimal control problem (Problem B)
must have a solution. From Lemma 1, we note that the existence of a solution to Problem B does not
automatically imply the existence of a solution to Problem BN (εN ) for an arbitrary choice of εN and N ;
hence, we need to find consistent pairs, (εN , N). By Lemma 1, we also know that for any given εN , we can
always find an N such that the feasible set of Problem BN (εN ) is nonempty. Alternatively, we can find a
εN for any given N . Because we choose to solve Problem B via a spectral algorithm, we prefer to select N0

of the spectral algorithm and find a consistent ε0. We do this by an “elastic procedure” defined below.

A. Elastic Programming for Problem BN0

In the first step, we arbitrarily select an initial grid size, N0, and a finite sequence of increasing numbers,
ε0 < ε1 < ε2 . . ., where ε0 is a desired feasibility tolerance. Such algorithmic tuning parameters may be
user-specified. The initialization procedure is to to find a small εN0 > 0 such that Problem BN0(εN0) is
feasible. In our elastic procedure, we start the initialization loop by solving Problem B(εN0) for εN0 = ε0. If
a feasible or an optimal solution is obtained, we proceed to the next step of the main algorithm; otherwise, a
search for a feasible solution for Problem B(εN0) is performed by solving the sequence of problems generated
by εN0 = ε1, ε2 . . . until a feasible solution is obtained or the sequence ends due to its finiteness. In the latter
case, the optimal control problem is declared infeasible and the algorithm terminates. If the initialization
procedure is successful, we denote the corresponding εN0 = εi and the spectral algorithm29 is initiated.

B. Robustness via the Covector Mapping Principle (CMP)

According to the CMP (see Ref. [20] for an introduction to this concept and Ref. [19] for a historical account),
a discretization must satisfy dual consistency in order to be convergent for optimal control. This principle
along with classic consistency26,28 provide two key links for overcoming the curse of complexity.

As illustrated in Fig. 3, the elastic program is initiated for solving Problem BN . Let MNλ(χ) denote the
multiplier set for Problem BN for any given value of primals, χ; then, it can be shown12,26 that

MNλ(χ) ⊇MλN (χ)

where MλN (χ) is the multiplier set associated with solving the boundary value problem (see Figs. 1 and 2).
The excess of multipliers in MNλ(χ) facilitate a natural relaxation to the unstable poles associated with the
symplectic structure of the Hamiltonian system represented by Problem Bλ. This relaxation is in addition
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Figure 3. Avoiding the curse of complexity via the CMP; adapted from Ross and Fahroo.5,12,19

to PS relaxation discussed in Sec. III.B. In other words, the excess of robustness afforded in both the primal
and dual spaces provides a potent way to circumvent the curse of complexity. See Refs. [20] and [26] for
more details.

C. Initializing Problem BN0

It is now clear that if the initialization of Problem BN0(εj) is done consistent with the spectral algorithm,
the algorithmic guarantees provided in the previous sections produce a globally convergent trajectory opti-
mization algorithm. To guarantee a reasonably successful initialization, we assume that the optimal solution
to the continuous-time problem (Problem B) is is bounded within sufficiently large state and control spaces;
that is, we assume that the optimal solution, t 7→ (x, u) is in (X × U) ⊆ (RNx × RNu), where X and U are
bounded. For the purpose of simplicity we take X and U to be specified in terms of the box constraints,

X =
{
x : xL ≤ x ≤ xU

}
(22)

U =
{
u : uL ≤ u ≤ uU

}
(23)

In principle, with the addition of this reasonable-bound assumption, the spectral algorithm is now capable
of providing solutions from arbitrary points that satisfy,

xk ∈ X, uk ∈ U, k = 0, . . . , Nj

We illustrate this feature by solving a problem from robotics.30 The system is a one-link flexible robot arm
whose dynamics are,

I1q̈1 + m1gl sin q1 + k(q1 − q2) = 0 (24)
I2q̈2 − k(q1 − q2) = u (25)

where
I1 = I2 = 1.0, k = 1.0, g = 9.8, m1 = 0.01, l = 0.5

The optimal control problem is to minimize,
∫ τf

τ0

u2(τ) dτ (26)

subject to the dynamics, the endpoint constraints,

[q1(τ0), q2(τ0), q̇1(τ0), q̇2(τ0)] = [0.03, 0.01, 0.04, 0.05] (27)
[q1(τf ), q2(τf ), q̇1(τf ), q̇2(τf )] = [0.06, 0.02, 0.08, 0.02] (28)

and the control constraint,
U = {u : −15 ≤ u ≤ 15} (29)
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Because this problem already has a box constraint on the controls, we only need to provide a reasonable
bound for the states. With a modicum of analysis, it is not too hard to conclude that this reasonable bound
may be stipulated as,

−20 ≤ xi ≤ 20 i = 1, . . . , 4

Thus, the “search space” for this problem is now shrunk from a possibly four dimensional infinite box to one
substantially smaller. Using random numbers inside this box, the PS spectral algorithm converges. That
is, for 100 random initial points, we obtained the exact same answer each time without any difficulty. The
average run time per run was a mere 0.2 seconds on a 2.4 GHz Pentium 4 PC with 512 MB RAM. See
Ref. [10] for further details and analysis.

It is extremely important to note that we are not claiming such performance results for all trajectory
optimization problems. We merely discuss this problem to note that the spectral algorithm generates results
in a robust manner despite that this problem is considered difficult in robotics. In many applications, it not
necessary to start at random points inside X× U; it is quite sufficient to start at some arbitrary point that
works. Such a working point over the space of all optimal control problems is the center of the box. This is
because at worst, the optimal solution points are at the corners of the box which are equidistant from the
center. This equidistant notion holds most effectively if the box is reasonably square. This implies that the
problem must be reasonably scaled. Since a trajectory optimization problem may indeed be badly scaled in
standard units (such as metric units), it is possible to re-scale the problem in “designer units” to meet this
assumption for guess-free trajectory optimization.

D. Squaring the Box Using Designer Units

Consider the following equations,

ẋ = vx (30)
ẏ = vy (31)

Suppose that the x-motion is very large compared to the y-motion. For instance, x may be in several
kilometers while y may be in several meters or fractions of a meter. Then, no matter what distance unit
is used, the problem will be badly scaled. While many physicists and engineers prefer to use canonical or
similar units to identify a minimal set of parameters for a problem, such units may not necessarily be suitable
from a computational point of view because the problem may remain badly scaled even in canonical units.
From a computational and mathematical perspective, there is no reason why the distance units for x must
be the same as the distance units for y. Thus, for example, we may compute x in kilometers and y in meters.
In the same spirit there is no need to have velocity units in the x direction to be the same as that in the
y-direction or for that matter for velocity units to be equal to distance units per time units! Thus, we can
define new variables as,

x = x/X, y = y/Y, vx = vx/Vx, vy = vy/Vy

where X, Y, Vx and Vy are arbitrary numbers or designer units. Similarly let

t = t/T

where T is a designer unit of time; then, denoting dx/dt as ẋ etc., we can write,

ẋ =
TVx

X
vx (32)

ẏ =
TVy

Y
vy (33)

Note that no substantial gains in scaling the equations may be possible if we choose to define velocity units
in terms of distance units per time units. Thus, by appropriately choosing the five quantities, X,Y, Vx, Vy

and T independently, it is possible to scale the two equations to computationally attractive choices even
when the physical problem is badly scaled.
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E. Illustrating the Concepts

Consider the following formulation of Bernoulli’s Brachistochrone problem,

xT = [x, y, v] u = [θ]

(Brac : 1)





Minimize J [x(·), u(·), tf ] = tf

Subject to ẋ = v sin θ

ẏ = v cos θ

v̇ = g cos θ

(x0, y0, v0) = (0, 0, 0)
(xf , yf ) = (xf , yf )

t0 = 0

where g is a constant, equal to 9.8 m/s2 for Earth. It is apparent by inspection that if xf and yf are 1 or
10 m, then the problem is well-scaled in metric units. To apply the guess-free algorithm, we now need to
define appropriate box constraints,

X =
{
x : xL ≤ x ≤ xU

}

U =
{
θ : θL ≤ θ ≤ θU

}

tf ∈ {
tf : tLf ≤ tf ≤ tUf

}

that must be non-binding. Let xf and yf be 10m, then, it is apparent that a reasonably “large” non-binding
box may be defined as,

xL = 0, xU = 20, θL = 0, θU = π, tLf = 0, tUf = 10

With these numbers, the guess-free spectral algorithm runs successfully and the results are shown in Fig. 4.
Also shown in Fig. 5 are the costates and the Hamiltonian. The constancy of the Hamiltonian at the value
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Figure 4. State and control trajectory from a guess-free algorithm implemented in DIDO c©.

−1 is an indicator of the extremality of the computed solution while the values of the costates indicates
that the dual variables are also well scaled. That is, the problem with the stipulated numbers is also well
balanced. This is why we call this the “good” Brachistochrone problem.31

Now suppose that
xf = 1 km = 1000m and yf = 1m

This problem with these numbers is very badly scaled in that we seek to find the minimum time trajectory
where the downrange is 1 km (or 1000 m) while the altitude drop is only 1 m. Theoretically, these wild
numbers makes no difference, but computationally, the problem becomes difficult to manage; hence, we call
this the “bad” Brachistochrone problem.31
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Figure 5. Costate trajectory and Hamiltonian evolution from a guess-free algorithm implemented in DIDO.

Let
xT = [x/X, y/Y, v/V ] u = [θ/Θ] t = t/T

where X, Y, V, Θ and T are arbitrary numbers or designer units. Denoting dx/dt as ẋ etc., we have a
potentially well-scaled problem given by,

(Brac : 1)





Minimize J [x(·),u(·), tf ] = tf

Subject to ẋ =
TV

X
v sin(θΘ)

ẏ =
TV

Y
v cos(θΘ)

v̇ =
Tg

V
cos(θΘ)

(x0, y0, v0) = (0, 0, 0)

(xf , yf ) =
(

xf

X
,
yf

Y

)

t0 = 0

tf ≤ tU

T

Note that the cost function in this formulation (J) is scaled by T . As will be apparent shortly, this implies
that the covectors also get scaled. Furthermore, the cost function may also be scaled by any value (and not
necessarily, T ) because minimizing a function or some multiple of the function generates the same value for
the independent variable (but not necessarily the cost value). In any event, the problem in its metric units
is easily recovered by setting all values of the designer units to be one. Now, one might hastily (and falsely)
conclude that we wish to choose X = 1000 and Y = 1 so that x and y range from 0 to 1. One of the most
important reasons why this is false is that the problem units must be balanced in dual space as well.

F. Dual Variables and Units: They Do Have a Meaning!

The control Hamiltonian for the scaled problem is given by,

H(λ, x, u) := λx
TV

X
v sin(θΘ) + λy

TV

Y
v cos(θΘ) + λv

Tg

V
cos(θΘ)
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From the Hamiltonian value condition and the Hamiltonian evolution equation, we have

H(λ(t),x(t), u(t)) = −1

This implies,

λx
TV

X
v sin(θΘ) + λy

TV

Y
v cos(θΘ) + λv

Tg

V
cos(θΘ) = −1 (34)

Now, in the “good” Brachistochrone problem, we had,

xf = 10 m and yf = 10 m

and all units were “1”. An inspection of Figure 4 shows that v and hence, v, varies from 0 to about 15. From
Equation 34, this implies that we should expect the costates to vary from 0 to about 0.1. This is precisely
the result in Figure 5. It is clear that the metric units would generate a badly scaled problem for the bad
Brachistochrone problem. A fundamental rule for balancing equations is to choose designer units in such
a manner that the states and costates are roughly the same order of magnitude. As noted by Ross,31 the
covectors do have physical meaning with co-units given by,

λ UNITS =
Cost UNITS
State UNITS

(35)

Consequently, the units for the adjoint covectors are automatically set when one chooses the units for the
states; that is, we have,

λx = λx
X

T
λy = λy

Y

T
λv = λv

V

T
(36)

As an example, if we choose
X = 10 = Y = V

in the good Brachistochrone problem with all other units as before (i.e. 1, or metric), then the state variables
will vary from approximately 0 to 1 (because of the “physics” of the problem and its data; see Figure 4).
Then, according to Equation 36, the costates must vary from approximately 0 to 1 as well (Cf. Figure 5).
This analysis is borne out in Figure 6. Because the good Brachistochrone problem is already well scaled in
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Figure 6. Scaled state and costate trajectory from a guess-free algorithm implemented in DIDO; compare Figures 4 and 5.

metric units the guess-free algorithm works just fine in either units. Note also that the designer units used
above are not the usual “canonical” units typically used in the literature. If we were to choose canonical
units, we must set,

X = Y, V =
X

T
, T =

V

g
=

X

gT
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In this case, all units get set automatically if any one of them is chosen to be a specific number. For example,
choosing X = 1m we get,

X = Y = 1 m, T =

√
1

9.81
≈ 0.32s, V =

X

T
≈ 3.1m/s

which has the effect of expanding the time scale by about a third, and hence shrinking the velocity scale by
about a third. A better choice of canonical units might be to choose X = xf = 10 m; in this case, the time
unit is nearly 1 and the velocity unit is nearly 10 and all the variables range from approximately 0 to 1 and
the results will be nearly the same as that illustrated in Figure 6.

It is clear that neither the metric units nor canonical units would generate a well-scaled problem for the
bad Brachistochrone problem. Furthermore, if were to choose designer units X = 1000 and Y = 1 so that x
and y range from 0 to 1, the variables are well scaled but the problem is badly balanced as this implies that
λx would be multiplied by 1000 (everything else remaining the same). Thus, a more informative choice for
the designer units might be

X = 100, Y = 20, V = 10, Θ = 1, T = 10

A solution to the bad Brachistochrone problem in these designer units is shown in Fig. 7. Note that the
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Figure 7. Scaled and balanced variables in designer units solved by DIDO’s guess-free algorithm.

costate λv in designer units is indeed exactly equal to its value in metric units. This follows from Equation
36 and our choice of V = T = 10. Furthermore because X = 100, the value of λx in designer units ( =
-0.127) is ten times larger (in absolute value) than it metric value of -0.0127 s/m. Likewise, because Y = 20,
the value of λy ( = 0.4510) in designer units is two times larger (in absolute value) than its metric value of
0.2255 s/m.

This solution was obtained by setting the non-binding box constraints as,

xL = 0, xU = 200, θ
L

= 0, θ
U

= π, t
L
f = 0, t

U
f = 20

The solution in metric units is shown in Figure 8. It is worth observing that the guess-free algorithm also
works even when the non-binding box constraints are non-square and substantially enlarged to

xL = 0, xU = (1000, 200, 1000), θ
L

= 0, θ
U

= π, t
L
f = 0, t

U
f = 20

V. Additional Examples

The guess-free algorithm is now widely useda by way of its implementation in DIDO. That is, DIDO
runs without the aid of a guess, while not preventing a user by supplying one. As a result, some interesting

aSee http://www.elissar.biz.
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Figure 8. Solution to the Bad Brachistochrone Problem from DIDO’s guess-free algorithm.

comments have been reported by various users around the world. For instance, in many situations, users
have reported that DIDO runs faster in its guess-free mode than when supplied with one. In any event,
fuel-optimal solutions to a 4-body problem under the guess-free algorithm are discussed and provided by
Park et al.32 Hurni et al33 discuss how to use the guess-free algorithm to autonomously plan and execute the
motion of an unmanned ground vehicle, particularly when information about obstacles is unknown a priori.
Finally, additional examples are provided are provided as part of the DIDO software package.31

VI. Conclusions

The twin curses of complexity and dimensionality have long hampered a viable approach to a guess-free
trajectory optimization algorithm. Advances in pseudospectral (PS) methods indicate that PS discretization
offer a certain robustness to the solution of the discrete problem by way of the covector mapping principle.
These advances are made possible by a combination of ideas: PS relaxation related to the existence and
convergence of the discretization, the use of the Covector Mapping Principle (CMP) for designing the spectral
algorithm, and elastic programming for an initial setup. When these advances are combined together, the
design of a guess-free algorithm relies on a mild assumption that the solution is reasonably bounded and that
the problem variables are well scaled and balanced. For any given problem, it is possible to computationally
balance the vectors and covectors using Pontryagin’s Principle as a necessary condition rather than as a
problem solving concept. The CMP does the remainder of the tasks.
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