21 research outputs found

    Comparative toxicity evaluation of targeted anticancer therapeutics in embryonic zebrafish and sea urchin models

    Get PDF
    Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy

    Coco: Co-Design and Co-Verification of Masked Software Implementations on CPUs

    Get PDF
    The protection of cryptographic implementations against power analysis attacks is of critical importance for many applications in embedded systems. The typical approach of protecting against these attacks is to implement algorithmic countermeasures, like masking. However, implementing these countermeasures in a secure and correct manner is challenging. Masking schemes require the independent processing of secret shares, which is a property that is often violated by CPU microarchitectures in practice. In order to write leakage-free code, the typical approach in practice is to iteratively explore instruction sequences and to empirically verify whether there is leakage caused by the hardware for this instruction sequence or not. Clearly, this approach is neither efficient, nor does it lead to rigorous security statements. In this paper, we overcome the current situation and present the first approach for co-design and co-verification of masked software implementations on CPUs. First, we present Coco, a tool that allows us to provide security proofs at the gate-level for the execution of a masked software implementation on a concrete CPU. Using Coco , we analyze the popular 32-bit RISC-V Ibex core, identify all design aspects that violate the security of our tested masked software implementations and perform corrections, mostly in hardware. The resulting secured Ibex core has an area overhead around 10%, the runtime of software on this core is largely unaffected, and the formal verification with Coco of an, e.g., first-order masked Keccak S-box running on the secured Ibex core takes around 156 seconds. To demonstrate the effectiveness of our suggested design modifications, we perform practical leakage assessments using an FPGA evaluation board

    Risk factors for musculoskeletal injuries in the military : a qualitative systematic review of the literature from the past two decades and a new prioritizing injury model

    Get PDF
    Funding Information: The authors would like to thank LTC Dr. Damien Van Tiggelen (Belgium) and Ms. Beatriz Sanz-Bustillo Aguirre (Spain) for their participation and input in the discussion during the HFM-283 meeting in Cologne (Germany) in January 2020. Publisher Copyright: © 2021, The Author(s).Background: Musculoskeletal injuries (MSkIs) are a leading cause of health care utilization, as well as limited duty and disability in the US military and other armed forces. MSkIs affect members of the military during initial training, operational training, and deployment and have a direct negative impact on overall troop readiness. Currently, a systematic overview of all risk factors for MSkIs in the military is not available. Methods: A systematic literature search was carried out using the PubMed, Ovid/Medline, and Web of Science databases from January 1, 2000 to September 10, 2019. Additionally, a reference list scan was performed (using the “snowball method”). Thereafter, an international, multidisciplinary expert panel scored the level of evidence per risk factor, and a classification of modifiable/non-modifiable was made. Results: In total, 176 original papers and 3 meta-analyses were included in the review. A list of 57 reported potential risk factors was formed. For 21 risk factors, the level of evidence was considered moderate or strong. Based on this literature review and an in-depth analysis, the expert panel developed a model to display the most relevant risk factors identified, introducing the idea of the “order of importance” and including concepts that are modifiable/non-modifiable, as well as extrinsic/intrinsic risk factors. Conclusions: This is the qualitative systematic review of studies on risk factors for MSkIs in the military that has attempted to be all-inclusive. A total of 57 different potential risk factors were identified, and a new, prioritizing injury model was developed. This model may help us to understand risk factors that can be addressed, and in which order they should be prioritized when planning intervention strategies within military groups.publishersversionPeer reviewe

    Association of Clonal Hematopoiesis of Indeterminate Potential with Inflammatory Gene Expression in Patients with COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a disease with an inflammatory pheno type with increasing prevalence in the elderly. Expanded population of mutant blood cells carrying somatic mutations is termed clonal hematopoiesis of indeterminate potential (CHIP). The associ ation between CHIP and COPD and its relevant effects on DNA methylation in aging are mainly unknown. Analyzing the deep-targeted amplicon sequencing from 125 COPD patients, we found enhanced incidence of CHIP mutations (~20%) with a predominance of DNMT3A CHIP-mediated hypomethylation of Phospholipase D Family Member 5 (PLD5), which in turn is positively correlated with increased levels of glycerol phosphocholine, pro-inflammatory cytokines, and deteriorating lung function

    Genetic landscape of pediatric acute liver failure of indeterminate origin.

    Get PDF
    BACKGROUND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. METHODS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants. CONCLUSION This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Variation in general supportive and preventive intensive care management of traumatic brain injury: a survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study

    Get PDF
    Abstract Background General supportive and preventive measures in the intensive care management of traumatic brain injury (TBI) aim to prevent or limit secondary brain injury and optimize recovery. The aim of this survey was to assess and quantify variation in perceptions on intensive care unit (ICU) management of patients with TBI in European neurotrauma centers. Methods We performed a survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We analyzed 23 questions focused on: 1) circulatory and respiratory management; 2) fever control; 3) use of corticosteroids; 4) nutrition and glucose management; and 5) seizure prophylaxis and treatment. Results The survey was completed predominantly by intensivists (n = 33, 50%) and neurosurgeons (n = 23, 35%) from 66 centers (97% response rate). The most common cerebral perfusion pressure (CPP) target was > 60 mmHg (n = 39, 60%) and/or an individualized target (n = 25, 38%). To support CPP, crystalloid fluid loading (n = 60, 91%) was generally preferred over albumin (n = 15, 23%), and vasopressors (n = 63, 96%) over inotropes (n = 29, 44%). The most commonly reported target of partial pressure of carbon dioxide in arterial blood (PaCO2) was 36–40 mmHg (4.8–5.3 kPa) in case of controlled intracranial pressure (ICP) < 20 mmHg (n = 45, 69%) and PaCO2 target of 30–35 mmHg (4–4.7 kPa) in case of raised ICP (n = 40, 62%). Almost all respondents indicated to generally treat fever (n = 65, 98%) with paracetamol (n = 61, 92%) and/or external cooling (n = 49, 74%). Conventional glucose management (n = 43, 66%) was preferred over tight glycemic control (n = 18, 28%). More than half of the respondents indicated to aim for full caloric replacement within 7 days (n = 43, 66%) using enteral nutrition (n = 60, 92%). Indications for and duration of seizure prophylaxis varied, and levetiracetam was mostly reported as the agent of choice for both seizure prophylaxis (n = 32, 49%) and treatment (n = 40, 61%). Conclusions Practice preferences vary substantially regarding general supportive and preventive measures in TBI patients at ICUs of European neurotrauma centers. These results provide an opportunity for future comparative effectiveness research, since a more evidence-based uniformity in good practices in general ICU management could have a major impact on TBI outcome

    Retinal tissue develops an inflammatory reaction to tobacco smoke and electronic cigarette vapor in mice

    No full text
    Cigarette smoke has been identified as a major risk factor for the development of age-related macular degeneration (AMD). As an alternative to conventional cigarettes (C-cigarette), electronic cigarettes (E-cigarette) have been globally promoted and are currently widely used. The increasing usage of E-cigarettes raises concerns with regard to short- (2 weeks), medium- (3 months), and long- (8 months) term consequences related to retinal tissue. In this report, a controlled study in mouse models was conducted to probe the comprehensive effects of E-cigarette vapor on retina, retinal pigmented epithelium (RPE), and choroidal tissues by (1) comparing the effects of C-cigarette smoke and E-cigarette vapor on retina separately and (2) determining the effects of E-cigarette vapor on the RPE and analyzing the changes with regard to inflammatory (IL-1β, TNFα, iNOS) and angiogenic (VEGF, PEDF) mediators in retina/RPE/choroid by ELISA assays. The data showed that C-cigarette smoke exposure promoted an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor developed inflammatory and angiogenic reactions more pronounced in RPE and choroid as compared to retinal tissue, while nicotine-containing E-cigarette vapor caused even a more serious reaction. Both inflammatory and pro-angiogenic reactions increased with the extension of exposure time. These results demonstrate that exposure to C-cigarette smoke is harmful to the retina. Likewise, the exposure to E-cigarette vapor (with or without nicotine) increases the occurrence and progression of inflammatory and angiogenic stimuli in the retina, which might also be related to the onset of wet AMD in humans. KEY MESSAGES: C-cigarette smoke exposure promotes an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor develop inflammatory and angiogenic reactions more pronounced in RPE and choroid compared to retinal tissue, while nicotine-containing E-cigarette vapor causes even a more serious reaction. Both inflammatory and pro-angiogenic reactions increase with the extension of E-cigarette vapor exposure time

    Development of resistance to antiglioma agents in rat C6 cells caused collateral sensitivity to doxorubicin

    No full text
    Chemoresistance is a severe limitation to glioblastoma (GBM) therapy and there is a strong need to understand the underlying mechanisms that determine its response to different chemotherapeutics. Therefore, we induced resistance in C6 rat glioma cell line, which considerably resembles the characteristics of human GBM. The resistant phenotype was developed by 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), one of the most commonly used therapeutic drug in the course of GBM treatment. After confirmation of the cross-resistance to cisplatin (CPt) and temozolomide (TMZ) in newly established RC6 cell line, we examined cell death induction and DNA damage by these drugs. Resistance to apoptosis and deficiency in forming DNA double-strand breaks was followed by significant decrease in the mRNA expression of pro-apoptotic and anti-apoptotic genes. The development of drug resistance was associated with significant increase in reactive oxygen species (ROS) and decrease in oxidized to reduced gluthatione ratio in RC6 cell line indicating a reduced level of oxidative stress. The mRNA expression levels of manganese superoxid dismutase (MnSOD), inducible nitric oxide synthase (iNOS) and gluthatione peroxidase (GPx) were increased while hypoxia-inducible factor 1-alpha (HIF-1 alpha) was decreased in RC6 compared to C6 cells. This was in line with obtained changes in ROS content and increased antioxidative capacity of RC6 cells. Importantly, RC6 cells demonstrated collateral sensitivity to doxorubicin (DOX). The analysis of this phenomenon revealed increased accumulation of DOX in RC6 cells due to their adaptation to high ROS content and acidification of cytoplasm. In conclusion, newly established RC6 rat glioma cell line could be used as a starting material for the development of allogenic animal model and preclinical evaluation of new antiglioma agents. Collateral sensitivity to DOX obtained after BCNU treatment may prompt new studies aimed to find efficient delivery of DOX to the glioma site in brain. (C) 2015 Elsevier Inc. All rights reserved.Ministry of Education, Science and Technological Development of Serbia {[}III 41031, III 41025
    corecore