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Abstract 

Background & Aims: Pediatric acute liver failure (PALF) is a life-threatening condition. In 

Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-

28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging 

clinical management, including liver transplantation. We systematically studied indeterminate 

PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and 

analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this 

condition. 

Methods: With this international, multicenter observational study, patients (0-18 years) with 

indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype 

were retrieved and systematically analyzed. 

Results: In total, 260 indeterminate PALF patients from 19 countries were recruited between 

2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic 

diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in 

the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease 

genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the 

most frequent findings. When categorizing, most frequent were mitochondrial diseases 

(45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase 

deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver 

transplants. 

Conclusion: This study elucidates a large contribution of genetic causes in PALF of 

indeterminate origin with an increasing spectrum of disease entities. The high proportion of 

diagnosed cases and potential treatment implications argue for exome or in future rapid 

genome sequencing in PALF diagnostics.  
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Introduction 

Pediatric acute liver failure (PALF) is a rare, life-threatening clinical condition mainly 

affecting children in their first year of life [1]. In the US, PALF is mainly caused by 

paracetamol intoxication (13%), metabolic disorders (10%) and viral infections (8%) [2]. In 

Europe, a systematic collection of data on PALF aetiologies is lacking. Single-centers report 

inherited metabolic diseases (14-28%) and viral infections (12-16%) as main causes of PALF 

in Europe [3,4]. In US and European cohorts, the underlying etiology remained unclear in 

about half of cases, hampering clinical management including disease-specific therapies, 

particularly decision-making regarding liver transplantation [1–4]. This uncertainty is critical 

for survival with a high burden for physicians, affected individuals and their families. 

Therefore, establishing a causal diagnosis is central in PALF. Although standardized 

approaches regarding biochemical testing and targeted Sanger sequencing in children with 

PALF contributed to a higher diagnostic rate and helped to elucidate some PALF aetiologies, 

a large fraction of PALF cases remained unclassified [5]. Access to next generation 

sequencing (NGS) techniques unraveled novel or uncovered genetic causes of hitherto 

unsolved cases of PALF. An important milestone boosting WES in acute liver failure (ALF) 

was the identification of biallelic variants in NBAS as a cause of recurrent acute liver failure 

(RALF) with onset in infancy (MIM: #616483) [5,6]. More recently, numerous NBAS cases 

[7] but also reports on other rare genetic diseases associated with PALF were published, such 

as infantile liver failure syndrome type 1 due to variants in LARS1 (MIM: #615438) [8,9], 

infantile liver failure syndrome type 3 due to variants in RINT1 (MIM: #618641) [10], and 

transient infantile liver failure syndrome due to variants in TRMU (MIM: #613070) [11]. In 

the context of the rapidly growing knowledge on genetic causes of PALF, a single center 

retrospective analysis of 148 PALF cases (between 2001 and 2011) identified the underlying 

ACCEPTED

D
ow

nloaded from
 http://journals.lw

w
.com

/hep by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

n
Y

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
2+

Y
a6H

515kE
=

 on 11/20/2023



genetic cause of formerly indeterminate cases in 27% using custom NGS panel, indicating the 

high proportion of genetic causes among unsolved cases before the era of next generation 

sequencing [12]. However, a systematic whole exome sequencing (WES) study has not been 

performed to date in individuals with PALF of unknown etiology. 

Therefore, in the present international, multicentre study, we aimed to study the proportion, 

type and biochemical and clinical presentation of genetic diseases identified by WES in a 

cohort of individuals with PALF of indeterminate etiology.  

Materials and Methods 

Study design and recruitment of patients 

The study was carried out as an international, multicentre study including both prospective 

and retrospective cases. The inclusion criterion was the clinical diagnosis of PALF of 

unknown etiology in children aged 0-18 years. The clinical diagnosis of PALF was made 

according to local criteria, including patient phenotype and laboratory parameters such as 

plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, 

bilirubin and INR (international normalized ratio). Individuals were eligible if diagnostic 

work-up did not establish the etiology of PALF; work-up was broadly consistent within the 

collaborating expert centers for pediatric hepatology (for details see Suppl. Table 1, 

http://links.lww.com/HEP/I114). When there was more than one episode of PALF, cases 

were characterized as recurrent acute liver failure (RALF). Data on country of origin, sex, 

clinical signs and symptoms using the human phenotype ontology (HPO) [13] as well as 

laboratory and histology data were retrieved via a specific case report form. All procedures 

were in accordance with the ethical standards of the responsible committee on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 2013. Informed 

consent to participate in the study was obtained from all patients and/or from their parents in 
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case of minor patients. The study was approved by the ethical committees of the Technical 

University Munich and the University Hospital Heidelberg. 

 

Whole exome sequencing and variant prioritization 

WES of cases and unaffected parents was performed at the Helmholtz Centre Munich 

(Munich, Germany) for research cases and the Institute of Human Genetics, Klinikum rechts 

der Isar, Technical University Munich (TUM, Munich Germany) for diagnostic cases. WES 

data analysis was performed using an in-house pipeline of TUM [14]. WES was performed 

on genomic DNA extracted from blood as previously published [15]. Sequencing reads were 

aligned to human genome-build GRCh37/hg19 (UCSC Genome Browser) using the Burrows-

Wheeler Aligner (v.0.7.5a) [16]. Single-nucleotide variants (SNVs) and small insertions and 

deletions were detected using the Genome Analysis Toolkit (GATK) [17]. Copy number 

variants (CNVs) were detected with ExomeDepth [18]. Mitochondrial DNA (mtDNA) 

variants were assessed from exome data as described [19]. 

A special focus was given to genes previously reported to be associated with ALF. This gene 

list was manually created and extended through searching the OMIM database for all entries 

matching the keyword "liver failure". This resulted in a set of 243 distinct candidate genes 

(Suppl. Table 2, http://links.lww.com/HEP/I115). Variants were classified according to the 

guidelines of the American College of Medical Genetics and Genomics [20] using the Python 

package "InterVar" and the ClinVar annotation [21]. 

 

Phenotypic analysis 

The following clinical variables were collected and analyzed: gender, weight, height, age at 

the time of the episode(s) of acute liver failure/first symptoms of liver disease and at last 

assessment, patient survival, need for liver transplant (LT), and cause of death. Age ranges 
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were defined as follows: neonatal period, age of onset at birth until day 28; infancy, age of 

onset before second year of life; early childhood, age of onset between second year of life 

and fifth year of life; childhood, age of onset between fifth and twelfth year of life; 

adolescence, age of onset between twelfth and eighteenth year of life. Laboratory data during 

the episode of liver failure were collected using the international unit system (SI). 

Additionally, the most prominent hepatic and extrahepatic clinical features were provided as 

human phenotype ontology (HPO) terms by the referring clinicians [13]. Based on the 

provided HPO terms, ancestral HPO terms were derived from the ontology using the R 

package “OntologyX” [22]. 

 

Statistical analyses 

Statistical analyses were performed using R version 4.0.4. For conducting survival analyses 

in R the “Survival” and “Survminer” packages were used. The log-rank test was used to 

compare survival between different categorical variables. 

 

 

Results 

Study cohort 

A total of 260 individuals were enrolled in this study between 2011 and 2022, with 111 

individuals being prospectively enrolled and 149 cases enrolled retrospectively. Forty had 

been reported previously in publications on single disease gene discoveries or phenotypic 

spectrum studies [5–7,9–11,23–28]. WES data were analyzed at the Technical University of 

Munich, of which 175 were examined as singletons and 85 by trio WES. 

One hundred and eighteen (118/260) patients were female (45%). Patients originated from 

centers in 19 countries in Europe, Asia, or North America (Fig. 1A). The majority of patients 
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(70%) were enrolled in Germany, Japan, and the UK which is reflected in the estimated 

ethnic background based on the WES data (Fig. 1B). Fifty-nine individuals (59/260) 

presented with recurrent episodes of ALF (RALF). On average patients presented the second 

episode of ALF within 0.9 years (mean: 0.9 years ± 0.9 years standard deviation), whereas 

time intervals between ALF were significantly longer for further episodes (mean: 2.2 years ± 

4.8 years) (Suppl. Fig. 1, http://links.lww.com/HEP/I108). 

Three hundred and seventy-eight (378) distinct, non-redundant HPO terms were reported, 

resulting in a median of 12 HPO terms per patient (range 2 - 29) spanning a median of 5 

organ systems (Fig. 1B, Suppl. Table 3, http://links.lww.com/HEP/I116). 

With respect to clinical liver involvement, 74 patients presented with hepatomegaly, 59 had 

cholestasis, and 52 ascites. Jaundice was present in 38 individuals. Besides the liver, main 

phenotypic presentations included abnormalities of metabolism (100%), the blood and blood-

forming tissues (79%), the nervous system (55%), the cardiovascular system (28%), and the 

immune system (25%) (Fig. 1C). 

 

Figure 1: Geographical origin, clinical phenotypes and affected organ systems.  

(A) Geographic origin: the number of patients recruited within the different countries is 
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indicated by color. (B) Ancestry prediction based on WES data. (C) Frequency of phenotypic 

abnormalities within the whole cohort using the Human Phenotype Ontology (HPO). HPO 

terms with a frequency of 20 and higher are displayed. The exact INR values were not 

available for all cases, however, for all patients with available INR information, INR levels 

were abnormally elevated. All frequencies are shown in absolute numbers. Missing data may 

have led to low numbers in some of the items (e.g., cholestasis, conjugated 

hyperbilirubinemia). WES, whole exome sequencing; INR, international normalized ratio; 

EUR, european; EAS, east asian; SAS, south asian; AFR, african. 

 

All patients had abnormal blood homeostasis or abnormalities of metabolism (according to 

the HPO terminology), including elevated aminotransferases, hyperbilirubinemia, acidosis, 

increased serum lactate, hypoalbuminemia, hyperammonemia and hypoglycemia. Concerning 

blood and blood-forming tissue, the most frequent clinical features besides prolonged 

prothrombin time were thrombocytosis, thrombocytopenia and anemia. Frequently reported 

neurological abnormalities were hepatic encephalopathy, neurodevelopmental delay and 

seizures. Organ involvement stratified by clinical phenotype revealed only few differences 

between ALF and RALF cases, but abnormalities of the head and neck, nervous and 

musculoskeletal system were more common in the RALF than in the ALF group (Fisher 

Exact test, nominal p-value < 0.05; Suppl. Fig. 2, http://links.lww.com/HEP/I109). 

 

 

Biochemical characterisation of the whole cohort showed broad ranges for plasma ALT 

activity with a median of 907 U/l (range: 20 U/l - 19,200 U/l) and AST activity with a median 

of 1,939 (range: 36 U/l - 31,800 U/l) (Fig. 2A, 2B). When analyzed separately, patients with 

RALF had a significantly higher ALT activity with a median of 3,900 U/l (range: 167 U/l - 
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19,200 U/l) (p-value 2.3x10-11, Wilcoxon Test) and AST activity with a median of 4,804 

(range: 74 U/l - 31,800 U/l) (p-value 5.5x10-8, Wilcoxon Test) compared to the activity levels 

in the ALF group with ALT activity with a median of 582 U/l (range: 20 U/l - 15,528 U/l) 

and AST activity with a median of 1,395 (range: 36 U/l - 21,227 U/l). Median maximal INR 

was 3 (range: 1.21 - 15.7), and median maximal total bilirubin was 140 µmol/L (range: 4.62 - 

1,219.2 µmol/L). (Fig. 2C, 2D, 2E). Sixteen cases in the ALF cohort showed a bilirubin level 

below 17.1 µmol/L (1 mg/dl) and hence a low bilirubin phenotype. Five patients were 

reported to have a conjugated bilirubin below 5.1 µmol/l (0.3 mg/dl). Bilirubin and INR 

levels did not differ significantly between patients with ALF and RALF. 

 

Figure 2: Biochemical characterisation of the cohort. Laboratory characterisation of ALF 

and RALF including AST, ALT, liver function (INR), total bilirubin as well as direct 

bilirubin using violin plots. Bold dots indicate the median, bars indicate the 25th to 75th 

percentile; green dots represent values within the reference range for normal values according 

to a consensus of Deutsche Gesellschaft für Klinische Chemie und Laboratoriumsmedizin 

(DGKL) and Verband der Diagnostika- und Diagnostikageräte-Hersteller (VDGH) [29]. 
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****p ≤ 0.0001 by Wilcoxon Test. AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; INR, international normalized ratio. ALF, acute liver failure; RALF, 

recurrent acute liver failure. 

Liver biopsy data were available for 104 cases, with steatosis (36/104) and fibrosis (34/104) 

being the most commonly reported histologic findings. Steatosis was found significantly 

more frequent in RALF cases than in ALF cases, whereas other histologic findings exhibited 

no differences between RALF and ALF(nominal p-value < 0.05; Suppl. Fig. 3, 

http://links.lww.com/HEP/I110). 

 

At the time point of data analysis, 181 patients were alive (134 with native liver survival, 47 

with liver transplantation), while 79 children had died, 9 of those after liver transplantation 

(Fig. 3A). Age of onset of ALF (first episode in patients with a RALF phenotype) ranged 

from neonatal to juvenile, with the majority of patients presenting within the first year of life 

(data available for 209 patients) (Fig. 3B). The majority of deaths due to ALF (72%) 

occurred within the first year of life (Fig. 3C). Comparison of the overall survival rate in the 

two clinical subgroups revealed a significantly higher native liver survival rate in the RALF 

subgroup as compared to the ALF subgroup (Fig. 3D). When stratified by age of ALF onset, 

decreased native liver survival probability was associated with a younger age of onset (Fig. 

3E). A trigger for ALF was reported in 82 cases, with infections being the most prominent 

one (77 cases). ACCEPTED
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Figure 3: Outcome of PALF patients. (A) Patient and native liver survival. (B) Timeline for 

age at first ALF in years. (C) Timeline for age of death after the first ALF in years. (D) 

Kaplan Meier plot for the native liver survival after the first ALF stratified by the clinical 

phenotype in months. P-value calculation by log-rank test. (E) Kaplan Meier Plot for the 

native liver survival after the first ALF stratified by the age of onset. ALF, acute liver failure; 

RALF, recurrent acute liver failure. 

 

Genetics 

WES analysis established a genetic diagnosis in 97/260 of so far genetically unsolved cases 

(37%). Nineteen patients remained unsolved with variants of uncertain significance in OMIM 

disease genes or candidate disease genes. In the remaining 144/260 patients (55%), no variant 
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could be prioritized. Pathogenic and likely pathogenic variants were detected in 36 distinct 

ALF disease associated genes, of which more than half (21/36, 58%) were reported in single 

cases only (Fig 4A). Defects in NBAS (21%), MPV17 (8%) and DGUOK (7%) occurred most 

frequently. In 92/97 cases, the causative genetic defect was inherited in an autosomal 

recessive fashion; among these, 53/92 were homozygous for disease-causing variants (Suppl. 

Table 4, http://links.lww.com/HEP/I117). In total, 108 distinct variants classified as “likely 

pathogenic” or “pathogenic” according to ACMG criteria within the 36 genes were found. Of 

the 108 variants 56 (52%) were already reported as ‘likely pathogenic’ or ‘pathogenic’ in 

ClinVar at the time point of WES analysis. Missense variants formed the major proportion of 

all disease-causing variants. Out of the 36 cases in this study who had consanguineous 

parents, a genetic diagnosis was established in 22 (61%). Additionally, 20 out of 22 

genetically diagnosed cases were found to be homozygous for the disease-causing variant. 

When categorizing the disease genes to functional groups, most of them are associated with 

mitochondrial diseases (45%), followed by disorders of vesicular trafficking (28%) and 

cytosolic aminoacyl-tRNA synthetase deficiencies (10%) (Fig 4A). Diagnostic yield was 

higher in cases with ALF within the first five years of life (40%; n=187) compared to 

children > 6 years of age (14%; n=21) (Suppl. Fig 4, http://links.lww.com/HEP/I111). 

Highest yield was achieved in infancy (41%; n=123) and in children with RALF (66%; n=59) 

(Fig 4B). The majority of cases with disorders of vesicular trafficking developed RALF. 

NBAS deficiency was the most frequent diagnosis in this group. In the majority of 

mitochondrial diseases (68%), ALF occurred within the first six months of life (median 0.2 

years), whereas disorders of vesicular trafficking and cytosolic aminoacyl-tRNA synthetases 

were characterized by an age of onset of half a year and older (Fig 4C). 
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Patients with disorders of vesicular trafficking rarely died, while patients with mitochondrial 

disease showed a high mortality. For the other disease groups patient numbers were too low 

for analyses of survival (Fig 4D). 

 

Figure 4: Molecular etiology of PALF. (A) Genetic spectrum of PALF; (B) Diagnostic yield, 

stratified by ALF vs. RALF; (C) Age of onset stratified by disease groups, and (D) native 

liver survival after first ALF stratified by the two most frequent disease groups. ALF, acute 

liver failure; RALF, recurrent acute liver failure. 

 

 

The three most frequent disease groups in this cohort presented a broad phenotypic spectrum 

with multiple organs involved (Suppl. Fig 5, http://links.lww.com/HEP/I112). 

 

Liver biopsy data were available for 44 genetically solved cases (Suppl. Fig. 6, 

http://links.lww.com/HEP/I113). While fibrosis was most common in patients with 
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mitochondrial disorders, cirrhosis was found most frequently in patients with cytosolic tRNA 

synthetase deficiencies. Steatosis was the commonest finding in all three distinct disease 

groups and necrosis was only rarely reported in any of the distinct disease groups. No 

significant differences in necrosis or inflammation incidence could be identified between the 

groups. 

 

 

Subcohort fulfilling PALF study group inclusion criteria 

The inclusion criteria of our cohort differed from those of the US PALF study group 

(PALFSG, [1]). We investigated whether applying the more stringent PALFSG inclusion 

criteria to our cohort would yield different results. 145/201 ALF cases of our study fulfilled 

the PALFSG inclusion criteria.  Comparing this subgroup with the overall cohort, there were 

no differences apart from INR (and the associated HPO umbrella term blood and blood 

forming tissue), which was significantly higher in the subgroup fulfilling PALFSG 

criteria,(for details see Suppl. Table 5, http://links.lww.com/HEP/I118). 

 

Discussion 

PALF is a life-threatening event with very heterogenous aetiologies. Despite ongoing efforts 

of standardizing diagnostic approaches, in one third to half of cases no causal diagnosis is 

achieved [30]. In 2015, variants in NBAS were identified as a novel cause of PALF [5], the 

number of individuals diagnosed with NBAS deficiency rose rapidly [6,7] and motivated to 

further explore the genetic landscape of PALF of unknown etiology. Hence, the PALFES 

study was started including up to now 260 individuals with PALF of unknown etiology from 

three different continents. This represents by far the largest cohort of unresolved PALF cases 
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studied by WES reported in the literature to date. A genetic diagnosis was established in 37% 

of unresolved PALF cases; in cases with RALF the diagnostic yield was even higher (66%). 

With the elucidation of about 40% of hitherto unexplained PALF cases, genetic diseases 

likely represent the largest group of PALF in terms of etiology. Nevertheless, it is noteworthy 

that 55% of patients in this series had no evidence of an underlying genetic disorder. 

Transcriptome or proteome analyses may further increase the diagnostic rate of genetic 

diseases by providing functional evidence on inconclusive candidate variants detected or by 

discovery of functional relevant variants missed by the genetic analysis of our cohort. Even 

disregarding this, a substantial part of indeterminate PALF is likely of non-genetic origin 

[31]. According to Squires et al. (2022) [32], the fraction of PALF cases with unknown 

etiology is particularly high in the first three years of life, which is the age range in which our 

study demonstrates the highest molecular diagnostic yield by WES. 

Three main groups of genetic diseases underlying indeterminate PALF have been identified: 

mitochondrial disorders, disorders of vesicular trafficking and cytosolic aminoacyl-tRNA 

synthetase deficiencies (Fig 5). Mitochondrial genetic diagnoses were noticeably more 

frequent within our study than had previously been reported [32]. Still, in our cohort, one of 

the first reported genetic causes of PALF, mutations in mitochondrial polymerase gamma 

(POLG) associated with Alpers syndrome, was rarely observed. Because it is a known cause 

of PALF, POLG suspected cases may have undergone targeted genetic testing and are 

therefore not included in this cohort. However, we cannot exclude the possibility of 

enrollment bias in the PALFES cohort, as some of the participating centers were studying a 

cohort of pediatric patients with mitochondrial diseases in parallel with the PALFES study, 

and thus mitochondrial-related ALF cases may have been assigned more frequently [33]. In 

addition, the mere fact that a genetic study was conducted may have led to a higher inclusion 

rate of patients with suspected genetic causes. Specifically, publications on new genetic 
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causes of RALF during the study led to an increased sending of RALF cases. Therefore, the 

unbiased diagnostic yield should likely be lower, with a potentially lower rate of 

mitochondrial disease and genetic causes of RALF. This suggestion is supported by the high 

proportion of RALF cases in our cohort, for which a genetic cause is more likely to be 

expected. 

A potential limitation of our study was the lack of an internationally standardized definition 

of PALF, which is also reflected in our cohort. Most of the individuals included in our cohort 

(201/260 including also RALF cases) met the stringent inclusion criteria of the longitudinal 

studies of PALF conducted by the "PALF Study Group" in the United States [1]. Although 

the PALF Study Group inclusion criteria do not represent definition criteria of PALF, they 

are frequently used as such. Our analyses show that these more stringent criteria would not 

lead to different results, including diagnostic yield, age at onset, histology, survival, organ 

involvement, histology, and disease genes. 

In general, PALF cases with a clear biochemical fingerprint (such as tyrosinemia type I, with 

elevated succinylacetone in urine or dried blood spots) are typically diagnosed based on 

metabolic investigations, and genetically confirmed in the further workup. The three disease 

groups identified in this study share the feature that no specific laboratory biomarker or 

metabolic fingerprint by itself can establish the molecular diagnosis or point specifically to a 

single disease gene. Accordingly, we could not identify a clear biochemical or clinical profile 

in the cases now diagnosed genetically by WES using already established investigations. 

More comprehensive metabolomic studies would be needed to extend the search for 

diagnostic biomarkers. Consequently, with our current knowledge, we advocate performing 

genetic analyses using WES or whole genome sequencing (WGS) in parallel to metabolic 

analyses as the timely decision on further appropriate treatment options such as 
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transplantation and/or specific drug therapy or dietary management in case of metabolic 

diseases will depend on the underlying disorder. 

Our study demonstrates that the lack of biomarker specificity also holds true for lactate in 

serum, as lactate concentration could not differentiate between mitochondrial disorders from 

other causes of PALF, indicating that lactic acidaemia is also a secondary finding in severe 

liver dysfunction such as PALF. Extremely high levels of AST and ALT have been 

associated with NBAS deficiency [6], often presenting as RALF. This reflects the 

significantly higher AST/ALT levels in this group; however, diagnosis cannot be ascertained 

based on this finding. Age of onset can direct the clinical suspicion towards possible genetic 

disorders underlying PALF, with mitochondrial disorder most frequently occurring in the 

neonatal period. Another frequent cause of neonatal acute liver failure is gestational 

alloimmune liver disease presenting typically with low AST and ALT levels. Such cases have 

not been included in our study. In our cohort only five out of 50 neonates showed ALT < 100 

U/L. Of note, in two of the five cases with low ALT, pathogenic variants in DGUOK were 

found to be responsible for the phenotype. There is a substantial overlap among the different 

disease groups with respect to age of onset. 

An unexpected histological finding in the PALFES cohort is the high percentage (30%) of 

progressive liver remodeling. This indicates that a subgroup has a preceding subclinical 

disease, with PALF as the first clinical presentation. 

The most commonly affected extrahepatic organ system was the nervous system, with hepatic 

encephalopathy and neurodevelopmental delay reported most often. In analogy to 

biochemical parameters, also the clinical parameters in our study did not discriminate 

between cases with and without a genetic diagnosis. This again emphasizes the relevance and 

necessity of genome wide genetic analyses in PALF to determine the underlying cause. 
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Establishing a (genetic) diagnosis is crucial for clinical management and outcome of children 

with PALF. While causative treatments are not available for most of the genetic disorders 

detected in our cohort, there are specific management approaches for several diseases. In 

patients with TRMU deficiency it has been shown that cysteine supplementation improved 

survival significantly compared to patients without cysteine supplementation [11]. Forced 

antipyretic management in ILFS1, ILFS2 and ILFS3 may help to avoid fever triggered RALF 

[6,7,9,10]. Additionally, decision on transplantation is dependent on the underlying disorder 

and the expected outcome in relation to both transplant liver survival and extrahepatic 

features and finally, the risk of recurrence of PALF in another child of the family can only be 

predicted with a genetic diagnosis. Our study demonstrates that outcome differs depending on 

the underlying disease etiology; native liver survival is significantly higher in individuals 

with disorders of vesicular trafficking compared to mitochondrial diseases. The role of liver 

transplantation for individuals with PALF due to genetic diseases is discussed controversially 

in the literature especially for mitochondrial disorders, due to potentially unfavorable 

neurological, cardiac or neuromuscular involvement and poor outcome, arguing against liver 

transplantation [34]. However, there are mitochondrial disorders such as TRMU or hepatic 

DLD deficiency where extrahepatic involvement is scarce with a favorable neurological 

prognosis [11,35]. Moreover, multisystemic mitochondrial disorders are not contradicting 

liver transplant in general, as there are reports of patients, e.g., with DGUOK deficiency, with 

minor neurological involvement who received a liver transplant and had a satisfactory post-

transplant course [11,36,37]. 

In order to help decision making, diagnosis of PALF and the identification of the etiology 

needs to be established within a short period of time as the clinical situation typically is 

critical and decisions are time-sensitive. Turn-around-time in our study was not assessed 

systematically, and individuals have also been enrolled retrospectively where turn-around 

ACCEPTED

D
ow

nloaded from
 http://journals.lw

w
.com

/hep by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

n
Y

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
2+

Y
a6H

515kE
=

 on 11/20/2023



time was not essential for clinical care. However, it is impractical to wait for a long time to 

receive WES results in critically ill patients. Hence, from a technical point of view, genome 

sequencing would be faster and more accurate than WES, with reported turn-around-times as 

low as 24 hours, being a promising option to achieve genetic diagnoses especially in critically 

ill children [38,39]. Higher investment costs and demanding computational power hampers 

availability of this technology in most hospitals, but will likely be available in the near future 

in many countries. Again, rapid establishment of a (genetic) diagnosis has the potential to 

both save lives and reduce costs [38,39]. 

 

 

Conclusions 

In conclusion, this study demonstrates that a relevant number of indeterminate PALF cases 

can be solved by WES. This shifts PALF in the range of other rare disorders for which 

WES/WGS is now a well-established diagnostic procedure. Major identified groups are 

mitochondrial disorders, disorders of vesicular trafficking, and cytosolic aminoacyl-tRNA 

synthetase deficiencies. An ascertained diagnosis helps physicians make treatment decisions 

and can save lives and costs. For these reasons, we assert that WES, or in the near future 

WGS, should be within a first line diagnostic approach for every child presenting with PALF. 
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Figure 5 A. Mitochondrial disease genes causing pediatric acute liver failure. B 

Disorders of vesicular trafficking and aminoacyl-tRNA synthetase deficiency (box) 

leading to pediatric acute liver failure. Genes that have been identified in cases within this 

study are shown in bold. 
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ALT  Alanine aminotransferase 

ALF  Acute liver failure 

AST  Aspartate aminotransferase 

CNV  Copy number variant 

GATK  Genome Analysis Toolkit  

HE  Hepatic encephalopathy 

HPO  Human phenotype ontology  

INR  International normalized ratio  

mtDNA Mitochondrial DNA  

PALF  Pediatric acute liver failure 

PALFES Pediatric acute liver failure exome sequencing 

PT  Prothrombin time 

RALF  Recurrent acute liver failure 

SNV  Single-nucleotide variants 

TUM  Technical University Munich  

WES  Whole exome sequencing 

WGS  Whole genome sequencing 
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