516 research outputs found

    eXtended Color Cell Compression -- A Runtime-efficient Compression Scheme for Software Video

    Get PDF
    Multimedia applications require a compression and decompression scheme for digital video. The standardized and widely used techniques JPEG and MPEG provide very good compression ratios, but are computationally quite complex and demanding. We propose to use an extension to the much simpler Color Cell Compression scheme as an alternative. Our extension includes the use of variable block sizes, the reuse of color index values from previously encoded blocks, and Huffman encoding of the stream of blocks. We present experimental results showing that our scheme provides much better runtime performance than MPEG, at the cost of a slightly inferior compression ratio. It is thus especially suited for software videos in high-speed networks

    Predicting the deleterious effects of mutation load in fragmented populations.

    Get PDF
    Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations

    Dynamic input demand functions and resource adjustment for US agriculture: state evidence

    Get PDF
    The paper presents an econometric model of dynamic agricultural input demand functions that include research based technical change and autoregressive disturbances and fits the model to annual data for a set of state aggregates pooled over 1950–1982. The methodological approach is one of developing a theoretical foundation for a dynamic input demand system and accepting state aggreage behavior as approximated by nonlinear adjustment costs and long-term profit maximization. Although other studies have largely ignored autocorrelation in dynamic input demand systems, the results show shorter adjustment lags with autocorrelation than without. Dynamic input demand own-price elasticities for the six input groups are inelastic, and the demand functions possess significant cross-price and research effects

    A complementary view on the growth of directory trees

    Full text link
    Trees are a special sub-class of networks with unique properties, such as the level distribution which has often been overlooked. We analyse a general tree growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of user-generated directory structures in computers. The model has a single parameter qq which interpolates between preferential attachment and random growth. Our analysis results in three contributions: First, we propose a more efficient estimation method for qq based on the degree distribution, which is one specific representation of the model. Next, we introduce the concept of a level distribution and analytically solve the model for this representation. This allows for an alternative and independent measure of qq. We argue that, to capture real growth processes, the qq estimations from the degree and the level distributions should coincide. Thus, we finally apply both representations to validate the model with synthetically generated tree structures, as well as with collected data of user directories. In the case of real directory structures, we show that qq measured from the level distribution are incompatible with qq measured from the degree distribution. In contrast to this, we find perfect agreement in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth of real directory structures as it fails to reproduce the level distribution. This insight can be generalised to point out the importance of the level distribution for modeling tree growth.Comment: 16 pages, 7 figure

    Genetic Algorithm for Line Labeling of Diagrams Having Drawing Cues

    Full text link

    Annotating Relationships between Multiple Mixed-media Digital Objects by Extending Annotea

    Get PDF
    Annotea provides an annotation protocol to support collaborative Semantic Web-based annotation of digital resources accessible through the Web. It provides a model whereby a user may attach supplementary information to a resource or part of a resource in the form of: either a simple textual comment; a hyperlink to another web page; a local file; or a semantic tag extracted from a formal ontology and controlled vocabulary. Hence, annotations can be used to attach subjective notes, comments, rankings, queries or tags to enable semantic reasoning across web resources. More recently tabbed Browsers and specific annotation tools, allow users to view several resources (e.g., images, video, audio, text, HTML, PDF) simultaneously in order to carry out side-by-side comparisons. In such scenarios, users frequently want to be able to create and annotate a link or relationship between two or more objects or between segments within those objects. For example, a user might want to create a link between a scene in an original film and the corresponding scene in a remake and attach an annotation to that link. Based on past experiences gained from implementing Annotea within different communities in order to enable knowledge capture, this paper describes and compares alternative ways in which the Annotea Schema may be extended for the purpose of annotating links between multiple resources (or segments of resources). It concludes by identifying and recommending an optimum approach which will enhance the power, flexibility and applicability of Annotea in many domains

    (Non)Existence of Pleated Folds: How Paper Folds Between Creases

    Get PDF
    We prove that the pleated hyperbolic paraboloid, a familiar origami model known since 1927, in fact cannot be folded with the standard crease pattern in the standard mathematical model of zero-thickness paper. In contrast, we show that the model can be folded with additional creases, suggesting that real paper “folds” into this model via small such creases. We conjecture that the circular version of this model, consisting simply of concentric circular creases, also folds without extra creases. At the heart of our results is a new structural theorem characterizing uncreased intrinsically flat surfaces—the portions of paper between the creases. Differential geometry has much to say about the local behavior of such surfaces when they are sufficiently smooth, e.g., that they are torsal ruled. But this classic result is simply false in the context of the whole surface. Our structural characterization tells the whole story, and even applies to surfaces with discontinuities in the second derivative. We use our theorem to prove fundamental properties about how paper folds, for example, that straight creases on the piece of paper must remain piecewise-straight (polygonal) by folding.National Science Foundation (U.S.) (CAREER Award CCF-0347776

    Variable-resolution Compression of Vector Data

    Full text link
    The compression of spatial data is a promising solution to reduce the space of data storage and to decrease the transmission time of spatial data over the Internet. This paper proposes a new method for variable-resolution compression of vector data. Three key steps are encompassed in the proposed method, namely, the simplification of vector data via the elimination of vertices, the compression of removed vertices, and the decoding of the compressed vector data. The proposed compression method was implemented and applied to compress vector data to investigate its performance in terms of the compression ratio, distortions of geometric shapes. The results show that the proposed method provides a feasible and efficient solution for the compression of vector data, is able to achieve good compression ratios and maintains the main shape characteristics of the spatial objects within the compressed vector data

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore