91 research outputs found
Observation of the Kibble-Zurek Mechanism in Microscopic Acoustic Crackling Noises
Characterizing the fast evolution of microstructural defects is key to understanding âcracklingâ phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM
Acoustic-Friction Networks and the Evolution of Precursory Rupture Fronts in Laboratory Earthquakes
We show that the mesoscopic and transport characteristics of networks follow
the same trends for the same type of the shear ruptures in terms of rupture
speed while also comparing the results of three different friction
experiments.The classified fronts obtained from a saw cut Westerly granite
fault regarding friction network parameters show a clear separation into two
groups indicating two different rupture fronts. With respect to the scaling of
local ruptures durations with the networks parameters we show that the gap is
related to the possibility of a separation between slow and regular fronts
Evaluating assumptions of scales for subjective assessment of thermal environments â Do laypersons perceive them the way, we researchers believe?
International audienc
Dynamic Evolution of Microscopic Wet Cracking Noises
Characterizing the interaction between water and microscopic defects is one
of the long-standing challenges in understanding a broad range of cracking
processes. Different physical aspects of microscopic events, driven or
influenced by water, have been extensively discussed in atomistic calculations
but have not been accessible in microscale experiments. Through the analysis of
the emitted noises during the evolution of individual, dynamic microcracking
events, we show that the onset of a secondary instability known as hybrid
events occurs during the fast healing phase of microcracking, which leads to
(local) sudden increase of pore water pressure in the process zone, inducing a
secondary instability, which is followed by a fast-locking phase on the
microscopic faults (pulse-like rupture)
A friction-wear correlation for four-ball extreme pressure lubrication
A first-ever friction-wear model for Four-Ball Extreme Pressure (EP) Lubrication test (ASTM D2783) is presented in this work. The model considers the rate of entropy generation and dissipation within the lubricated tribosystem to establish the friction-wear correlations for 12 lubricating oils comprising minerals, esters and other formulated oils. The correlations can be used to calculate the probability to pass/fail in the EP lubrication. The probability has similar trend as load-wear index from ASTM D2783 method. Besides, the friction-wear correlations allows quick estimation of EP performance of an unknown lubrication, upon comparing with that of an established one. The methods demonstrated here will help researchers or lubricant technologist to characterize the EP behavior quickly without over-relying on tribotester
Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology
Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
- âŠ