182 research outputs found

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications

    Get PDF
    Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically, transmission of pathogens and antibody development against FBS are possible. In this study, we investigated whether FBS can be substituted by human platelet lysate (PL) in ASC culture, without affecting functional capacities particularly important for cardiac repair application of ASC. We found that PL-cultured ASC had a significant 3-fold increased proliferation rate and a significantly higher attachment to tissue culture plastic as well as to endothelial cells compared with FBS-cultured ASC. PL-cultured ASC remained a significant 25% smaller than FBS-cultured ASC. Both showed a comparable surface marker profile, with the exception of significantly higher levels of CD73, CD90, and CD166 on PL-cultured ASC. PL-cultured ASC showed a significantly higher migration rate compared with FBS-cultured ASC in a transwell assay. Finally, FBS- and PL-cultured ASC had a similar high capacity to differentiate towards cardiomyocytes. In conclusion, this study showed that culturing ASC is more favorable in PL-supplemented medium compared with FBS-supplemented medium

    Systematic review regarding metabolic profiling for improved pathophysiological understanding of disease and outcome prediction in respiratory infections

    Full text link

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P < 5 x 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk
    corecore