438 research outputs found
Studies of transverse and longitudinal relaxations of Mn in molecular cluster magnet MnAc
The transverse and longitudinal relaxation rates 1/ and 1/ of
Mn in molecular cluster magnet MnAc have been measured al low
temperatures down to 200mK and in the fields upto 9T. Both of 1/ and
1/ exhibit remarkable decreases with decreasing temperature and with
increasing field, with the relative relation . In the
analysis, we adopt a simple model that the thermal fluctuation of the cluster
spin =10 associated with the spin-phonon interactionis, is only due to the
excitation to the first excited state from the ground state with the average
life-times and (). We show that
1/ is interpreted in terms of the strong collision regime as given by
1/, and that 1/ is understood by the high-frequency limit based
on standard perturbation treatment for the step-wise fluctuating field, thus
being proportional to 1/.Comment: 12 pages, 11 fugures, revtex
All Vacuum Near-Horizon Geometries in -dimensions with Commuting Rotational Symmetries
We explicitly construct all stationary, non-static, extremal near horizon
geometries in dimensions that satisfy the vacuum Einstein equations, and
that have commuting rotational symmetries. Our work generalizes
[arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been
given in . But our method is different from theirs and relies on a
matrix formulation of the Einstein equations. Unlike their method, this matrix
formulation works for any dimension. The metrics that we find come in three
families, with horizon topology , or ,
or quotients thereof. Our metrics depend on two discrete parameters specifying
the topology type, as well as continuous parameters. Not all of
our metrics in seem to arise as the near horizon limits of known
black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added,
discussion of the parameters specifying solutions corrected, amended to match
published versio
On a universal photonic tunnelling time
We consider photonic tunnelling through evanescent regions and obtain general
analytic expressions for the transit (phase) time (in the opaque barrier
limit) in order to study the recently proposed ``universality'' property
according to which is given by the reciprocal of the photon frequency.
We consider different physical phenomena (corresponding to performed
experiments) and show that such a property is only an approximation. In
particular we find that the ``correction'' factor is a constant term for total
internal reflection and quarter-wave photonic bandgap, while it is
frequency-dependent in the case of undersized waveguide and distributed Bragg
reflector. The comparison of our predictions with the experimental results
shows quite a good agreement with observations and reveals the range of
applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new
experiment analyzed, some other minor change
Multibarrier tunneling
We study the tunneling through an arbitrary number of finite rectangular
opaque barriers and generalize earlier results by showing that the total
tunneling phase time depends neither on the barrier thickness nor on the
inter-barrier separation. We also predict two novel peculiar features of the
system considered, namely the independence of the transit time (for non
resonant tunneling) and the resonant frequency on the number of barriers
crossed, which can be directly tested in photonic experiments. A thorough
analysis of the role played by inter-barrier multiple reflections and a
physical interpretation of the results obtained is reported, showing that
multibarrier tunneling is a highly non-local phenomenon.Comment: RevTex, 7 pages, 1 eps figur
Interference, reduced action, and trajectories
Instead of investigating the interference between two stationary, rectilinear
wave functions in a trajectory representation by examining the two rectilinear
wave functions individually, we examine a dichromatic wave function that is
synthesized from the two interfering wave functions. The physics of
interference is contained in the reduced action for the dichromatic wave
function. As this reduced action is a generator of the motion for the
dichromatic wave function, it determines the dichromatic wave function's
trajectory. The quantum effective mass renders insight into the behavior of the
trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission.
A companion paper to "Welcher Weg? A trajectory representation of a quantum
Young's diffraction experiment", quant-ph/0605121. Keywords: interference,
nonlocality, trajectory representation, entanglement, dwell time, determinis
Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation
In this work, we study the spin dynamics of Mn12-acetate molecules in the
regime of thermally assisted tunneling. In particular, we describe the system
in the presence of a strong transverse magnetic field. Similar to recent
experiments, the relaxation time/rate is found to display a series of
resonances; their Lorentzian shape is found to stem from the tunneling. The
dynamic susceptibility is calculated starting from the microscopic
Hamiltonian and the resonant structure manifests itself also in .
Similar to recent results reported on another molecular magnet, Fe8, we find
oscillations of the relaxation rate as a function of the transverse magnetic
field when the field is directed along a hard axis of the molecules. This
phenomenon is attributed to the interference of the geometrical or Berry phase.
We propose susceptibility experiments to be carried out for strong transverse
magnetic fields to study of these oscillations and for a better resolution of
the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references
adde
Modeling the Emission Processes in Blazars
Blazars are the most violent steady/recurrent sources of high-energy
gamma-ray emission in the known Universe. They are prominent emitters of
electromagnetic radiation throughout the entire electromagnetic spectrum. The
observable radiation most likely originates in a relativistic jet oriented at a
small angle with respect to the line of sight. This review starts out with a
general overview of the phenomenology of blazars, including results from a
recent multiwavelength observing campaign on 3C279. Subsequently, issues of
modeling broadband spectra will be discussed. Spectral information alone is not
sufficient to distinguish between competing models and to constrain essential
parameters, in particular related to the primary particle acceleration and
radiation mechanisms in the jet. Short-term spectral variability information
may help to break such model degeneracies, which will require snap-shot
spectral information on intraday time scales, which may soon be achievable for
many blazars even in the gamma-ray regime with the upcoming GLAST mission and
current advances in Atmospheric Cherenkov Telescope technology. In addition to
pure leptonic and hadronic models of gamma-ray emission from blazars,
leptonic/hadronic hybrid models are reviewed, and the recently developed
hadronic synchrotron mirror model for TeV gamma-ray flares which are not
accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.Comment: Invited Review at "The Multimessenger Approach to Gamma-Ray Sources",
Barcelona, Spain, July 2006; submitted to Astrophysics and Space Science. 10
pages, including 6 eps figures. Uses Springer's ApSS macro
A straw drift chamber spectrometer for studies of rare kaon decays
We describe the design, construction, readout, tests, and performance of
planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton
straws, used in an experimental search for rare kaon decays. The experiment
took place in the high-intensity neutral beam at the Alternating Gradient
Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two
analyzing dipoles, and redundant particle identification to remove backgrounds
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
- …
