41 research outputs found
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
It is generally inferred from astronomical measurements that Dark Matter (DM)
comprises approximately 27\% of the energy-density of the universe. If DM is a
subatomic particle, a possible candidate is a Weakly Interacting Massive
Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for
evidence of WIMP-nuclear collisions. DS is located underground at the
Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three
active, embedded components; an outer water veto (CTF), a liquid scintillator
veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper
describes the data acquisition and electronic systems of the DS detectors,
designed to detect the residual ionization from such collisions
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Exclusive photoproduction of pi degrees up to large values of Mandelstam variables s, t, and u with CLAS
Exclusive photoproduction cross sections have been measured for the process
with the Dalitz decay final state
using tagged photon energies in the range of GeV.
The complete angular distribution of the final state , for the entire
photon energy range up to large values of and , has been measured for
the first time. The data obtained show that the cross section , at
mid to large angles, decreases with energy as . This is in
agreement with the perturbative QCD quark counting rule prediction of . Paradoxically, the size of angular distribution of measured cross sections
is greatly underestimated by the QCD based Generalized Parton Distribution
mechanism at highest available invariant energy GeV. At the same
time, the Regge exchange based models for photoproduction are more
consistent with experimental data.Comment: 7 pages, 6 figure
Indoor/Outdoor Relationships for Organic and Elemental Carbon in PM2.5 at Residential Homes in Guangzhou, China
Nine residential areas were selected in this study (three homes in urban areas, three homes near roadsides, and three homes in industrial zones) to evaluate the indoor and outdoor relationship and carbonaceous species characteristics of PM2.5 in Guangzhou, China, during summer and winter 2004. Daily (24 h) average PM2.5 samples were collected on pre-fired quartz-fiber filters with low-volume samplers and analyzed by the thermal optical reflectance (TOR) method following the Interagency Monitoring of PROtected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of PM2.5 were 88.8 mu g/m(3) and 99.1 mu g/m(3), respectively. The average indoor OC and EC concentrations were 21.7 mu g/m(3), and 7.6 mu g/m(3), respectively, accounting for an average of 25.5% and 8.9% indoor PM2.5 mass, respectively. The average indoor and outdoor OC/EC ratios were 3.4 and 3.0, respectively. The average I/O ratios of PM2.5, OC and EC were 0.91, 1.02 and 0.96, respe! ctively. Poor indoor-outdoor correlations were observed for OC in the summer (R-2 = 0.18) and winter (R-2 = 0.33), while strong correlations (R-2 > 0.8) were observed for EC during summer and winter. OC and EC were moderately correlated (R-2 = 0.4) during summer, while OC and EC correlated well during winter, with a correlation coefficient of 0.64 indoors and 0.75 outdoors. Similar distributions of eight carbon fractions in indoor and outdoor TC pointed to the contributions of motor vehicle exhaust and coal-combustion sources. A simple estimation indicates that about ninety percent of carbonaceous particles in indoor air result from penetration of outdoor pollutants, and indoor sources contribute only ten percent of the indoor carbonaceous particles.</p
TMEM173 Drives Lethal Coagulation in Sepsis
© 2020 Elsevier Inc. Zhang et al. demonstrate that TMEM173 serves as a driver of immunocoagulation in lethal infection. Inhibition of the TMEM173 pathway can correct disseminated intravascular coagulation, prevent multiple organ failure, and improve animal survival in murine sepsis models, thereby revealing a potential therapeutic target for sepsis and septic shock
Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China
Size-resolved biogenic secondary organic aerosols (BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau (a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry (GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations (R2 = 0.44–0.90) between BSOA and sulfate were found at the six sites, suggesting that anthropogenic pollution (i.e., sulfate) could enhance SOA formation, because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode (< 3.3 μm) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse (> 3.3 μm) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas.</p
Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China
Daily concentrations of lead (Pb) were determined for PM2.5 samples collected from an urban location in Xi’an, China from 2007 to 2009 to assess the effects of the phasing out of leaded gasoline in 2000. The Pb concentrations (annual average: 0.306 μg m−3, range: below detection limit to 2.631 μg m−3) have declined after the phasing out of leaded gasoline, but the concentrations were still higher than those reported in many other cities. Seasonal variations of Pb were significant, with high concentrations in winter, presumably due to the burning of coal, and low concentrations in summer, due to a deep mixed layer and scavenging of aerosols by precipitation. Correlation analyses and enrichment factor calculations both indicated that anthropogenic sources had a large influence on atmospheric Pb. The lead isotope ratios were low in winter (the average 207Pb/206Pb ratio was 0.843 ± 0.032; 208Pb/206Pb was 1.908 ± 0.058) and high in summer (207Pb/206Pb was 0.860 ± 0.032; 208Pb/206Pb was 2.039 ± 0.057), suggesting that coal combustion was the major Pb source in winter and vehicular emission was the major Pb source in summer. Positive Matrix Factorization receptor model indicated that there were five major sources for Pb in PM2.5. Coal combustion was the major contributor, accounting for 39.0% PM2.5 mass, followed by vehicular emissions (30.4%). Other contributors included 17.8% from industrial emissions, 11.6% from biomass burning, and 1.2% from fugitive dust.</p
Gamma-ray astronomy with ARGO-YBJ
ARGO-YBJ is a full coverage air shower array located at the YangBaJing Cosmic
Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2) recording data with a duty
cycle ≥85% and an energy threshold of a few hundred GeV. In this paper the latest results
in Gamma-Ray Astronomy are summarized
Gamma-ray astronomy and cosmic-ray physics with ARGO-YBJ
The ARGO-YBJ detector, located 4300 m a.s.l. on the Tibet plateau, is a ground-based, full-
coverage array of Resistive Plate Chambers (RPCs) covering a surface of 78×74 m2, surrounded
by a guard ring of RPCs enclosing a total surface of about 11000 m2. ARGO-YBJ was designed
to detect extensive air showers generated by cosmic rays and gamma rays with primary energy
greater than few hundred GeV, in order to study the region of the cosmic-ray spectrum out of the
reach of both satellite-based experiments and traditional ground-based arrays. The experiment has
been running with its complete layout since November 2007, collecting over 2:5×1011 events.
The main results obtained by ARGO-YBJ will be presented here, and specifically: the monitoring
of astronomical gamma-ray sources, such as the Crab nebula and the MRK 421 AGN, the moon
shadow, the medium-scale anisotropy map, the proton-proton inelastic cross section at center-of-
mass energy between 70 and 500 GeV where no accelerator data are available