38 research outputs found

    Molecular phylogeny of telenomine egg parasitoids (Hymenoptera: Platygastridae s.l.: Telenominae): evolution of host shifts and implications for classification

    Get PDF
    Parasitoid wasps of the subfamily Telenominae (Hymenoptera: Platygastroidea, Platygastridae) develop as immatures within the eggs of other insects (Lepidoptera, Hemiptera, Diptera and Neuroptera). Rearing records indicate that individual species are restricted to attack hosts within only one of these four main groups. We conducted a phylogenetic analysis of the group using sequence data from multiple genes (18S, 28S, COI, EF-1α) to assess the pattern of shifts among host groups and to test the monophyly of and relationships among genera and species-groups. Telenominae sensu Masner—that is, including only the nominate tribe Telenomini—is not monophyletic. Representatives of the Psix group of genera (Psix Kozlov & Lê and Paratelenomus Dodd) form a monophyletic group that is sister to Gryon Haliday (Scelioninae: Gryonini) and are excluded from the subfamily. The remaining telenomines are monophyletic. The genus Phanuromyia Dodd and the crassiclava group of Telenomus Haliday, both recorded as parasitoids of planthopper eggs (Hemiptera: Auchenorrhyncha, Fulgoroidea), form a monophyletic group that is sister to all other telenomines exclusive of the Psix group. Twenty-nine species of the crassiclava and aradi groups of Telenomus are transferred to Phanuromyia as new combinations. Basal elements of the remaining species are all in groups reared from the eggs of true bugs (Heteroptera), primarily the stink bugs (Pentatomoidea) and seed bugs (Lygaeoidea). A shift to parasitism of lepidopteran eggs evolved within a single clade, occurring either one or two times. From this clade a small group of species, the Telenomus tabanivorus group, subsequently shifted to parasitism of egg masses of true flies (Tabanidae and Stratiomyiidae). Aholcus Kieffer and Platytelenomus Dodd both belong to the clade of lepidopteran parasitoids and are considered as junior synonyms of Telenomus (new synonymy for Aholcus). The monophyletic status of the two core genera, Telenomus and Trissolcus could not be resolved using these data. The phylogenetic pattern of host shifts suggests comparisons among taxa that may be fruitful in elucidating mechanisms by which parasitoids locate their hosts, the proximate factors that determine the host range, and the changes in these factors that influence host changes.Charuwat Taekul, Alejandro A. Valerio, Andrew D. Austin, Hans Klompen and Norman F. Johnso

    Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy

    Get PDF
    Background: The Astrophorida (Porifera, Demospongiae(rho)) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings: With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 59 end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion: The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification can be explained by the banality of convergent evolution and secondary loss in spicule evolution. These processes have taken place many times, in all the major clades, for megascleres and microscleres

    Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies

    Get PDF
    The pelidnotine scarabs (Scarabaeidae: Rutelinae: Rutelini) are a speciose, paraphyletic assemblage of beetles that includes spectacular metallic species (“jewel scarabs”) as well as species that are ecologically important as herbivores, pollinators, and bioindicators. These beetles suffer from a complicated nomenclatural history, due primarily to 20th century taxonomic and nomenclatural errors. We review the taxonomic history of the pelidnotine scarabs, present a provisional key to genera with overviews of all genera, and synthesize a catalog of all taxa with synonyms, distributional data, type specimen information, and 107 images of exemplar species. As a result of our research, the pelidnotine leaf chafers (a paraphyletic group) include 27 (26 extant and 1 extinct) genera and 420 valid species and subspecies (419 extant and 1 extinct). Our research makes biodiversity research on this group tractable and accessible, thus setting the stage for future studies that address evolutionary and ecological trends. Based on our research, 1 new species is described, 1 new generic synonym and 12 new species synonyms are proposed, 11 new lectotypes and 1 new neotype are designated, many new or revised nomenclatural combinations, and many unavailable names are presented. The following taxonomic changes are made: New generic synonym: The genus Heteropelidnota Ohaus, 1912 is a new junior synonym of Pelidnota MacLeay, 1819. New species synonyms: Plusiotis adelaida pavonacea Casey, 1915 is a syn. n. of Chrysina adelaida (Hope, 1841); Odontognathus gounellei Ohaus, 1908 is a revised synonym of Pelidnota ebenina (Blanchard, 1842); Pelidnota francoisgenieri Moore & Jameson, 2013 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota genieri Soula, 2009 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota lutea (Olivier, 1758) is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Pelidnota) texensis Casey, 1915 is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Strigidia) zikani (Ohaus, 1922) is a revised synonym of Pelidnota tibialis tibialis Burmeister, 1844; Pelidnota ludovici Ohaus, 1905 is a syn. n. of Pelidnota burmeisteri tricolor Nonfried, 1894; Rutela fulvipennis Germar, 1824 is syn. n. of Pelidnota cuprea (Germar, 1824); Pelidnota pulchella blanda Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota pulchella scapularis Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota xanthogramma Perty, 1830 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819). New or revised statuses: Pelidnota fabricelavalettei Soula, 2009, revised status, is considered a species; Pelidnota rioensis Soula, 2009, stat. n., is considered a species; Pelidnota semiaurata semiaurata Burmeister, 1844, stat. rev., is considered a subspecies. New or comb. rev. and revised status: Plusiotis guaymi Curoe, 2001 is formally transferred to the genus Chrysina (C. guaymi (Curoe, 2001), comb. n.); Plusiotis transvolcanica Morón & Nogueira, 2016 is transferred to the genus Chrysina (C. transvolcanica (Morón & Nogueira, 2016), comb. n.). Heteropelidnota kuhnti Ohaus, 1912 is transferred to the genus Pelidnota (P. kuhnti (Ohaus, 1912), comb. n.); Odontognathus riedeli Ohaus, 1905 is considered a subspecies of Pelidnota rubripennis Burmeister, 1844 (Pelidnota rubripennis riedeli (Ohaus, 1905), revised status and comb. rev.); Pelidnota (Strigidia) acutipennis (F. Bates, 1904) is transferred to the genus Sorocha (Sorocha acutipennis (F. Bates, 1904), comb. rev.); Pelidnota (Odontognathus) nadiae Martínez, 1978 is transferred to the genus Sorocha (Sorocha nadiae (Martínez, 1978), comb. rev.); Pelidnota (Ganonota) plicipennis Ohaus, 1934 is transferred to the genus Sorocha (Sorocha plicipennis (Ohaus, 1934), comb. rev.); Pelidnota similis Ohaus, 1908 is transferred to the genus Sorocha (Sorocha similis (Ohaus, 1908), comb. rev.); Pelidnota (Ganonota) yungana Ohaus, 1934 is transferred to Sorocha (Sorocha yungana (Ohaus, 1934), comb. rev.); Pelidnota malyi Soula, 2010: 58, revised status; Xenopelidnota anomala porioni Chalumeau, 1985, revised subspecies status. To stabilize the classification of the group, a neotype is designated for the following species: Pelidnota thiliezi Soula, 2009. Lectotypes are designated for the following names (given in their original combinations): Pelidnota brevicollis Casey, 1915, Pelidnota brevis Casey, 1915, Pelidnota debiliceps Casey, 1915, Pelidnota hudsonica Casey, 1915, Pelidnota oblonga Casey, 1915, Pelidnota pallidipes Casey, 1915, Pelidnota ponderella Casey, 1915, Pelidnota strenua Casey, 1915, Pelidnota tarsalis Casey, 1915, Pelidnota texensis Casey, 1915, and Scarabaeus punctatus Linnaeus, 1758. The following published infrasubspecific names are unavailable per ICZN Article 45.6.1: Pelidnota (Odontognathus) cuprea var. coerulea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. rufoviolacea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. nigrocoerulea Ohaus, 1913; Pelidnota pulchella var. fulvopunctata Ohaus, 1913; Pelidnota pulchella var. sellata Ohaus, 1913; Pelidnota pulchella var. reducta Ohaus, 1913; Pelidnota unicolor var. infuscata Ohaus, 1913. The following published species name is unavailable per ICZN Article 11.5: Neopatatra synonyma Moore & Jameson, 2013. The following published species name is unavailable per application of ICZN Article 16.1: Parhoplognathus rubripennis Soula, 2008. Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) 3 The following published species name is unavailable per application of ICZN Article 16.4.1: Strigidia testaceovirens argentinica Soula, 2006, Pelidnota (Strigidia) testaceovirens argentinica (Soula, 2006), and Pelidnota testaceovirens argentinica (Soula, 2006). The following published species names are unavailable per application of ICZN Article 16.4.2: Homonyx digennaroi Soula, 2010; Homonyx lecourti Soula, 2010; Homonyx mulliei Soula, 2010; Homonyx simoensi Soula, 2010; Homonyx wagneri Soula, 2010; Homonyx zovii Demez & Soula, 2011; Pelidnota arnaudi Soula, 2009; Pelidnota brusteli Soula, 2010; Pelidnota chalcothorax septentrionalis Soula, 2009; Pelidnota degallieri Soula, 2010; Pelidnota lavalettei Soula, 2008; Pelidnota lavalettei Soula, 2009; Pelidnota dieteri Soula, 2011; Strigidia gracilis decaensi Soula, 2008, Pelidnota (Strigidia) gracilis decaensi (Soula, 2008), and Pelidnota gracilis decaensi (Soula, 2008); Pelidnota halleri Demez & Soula, 2011; Pelidnota injantepalominoi Demez & Soula, 2011; Pelidnota kucerai Soula, 2009; Pelidnota malyi Soula, 2010: 36-37; Pelidnota mezai Soula, 2009; Pelidnota polita darienensis Soula, 2009; Pelidnota polita orozcoi Soula, 2009; Pelidnota polita pittieri Soula, 2009; Pelidnota punctulata decolombia Soula, 2009; Pelidnota punctulata venezolana Soula, 2009; Pelidnota raingeardi Soula, 2009; Pelidnota schneideri Soula, 2010; Pelidnota simoensi Soula, 2009; Pelidnota unicolor subandina Soula, 2009; Sorocha carloti Demez & Soula, 2011; Sorocha castroi Soula, 2008; Sorocha fravali Soula, 2011; Sorocha jeanmaurettei Demez & Soula, 2011; Sorocha yelamosi Soula, 2011; Xenopelidnota bolivari Soula, 2009; Xenopelidnota pittieri pittieri Soula, 2009. Due to unavailability of the name Pseudogeniates cordobaensis Soula 2009, we describe the species as intentionally new (Pseudogeniates cordobaensis Moore, Jameson, Garner, Audibert, Smith, and Seidel, sp. n.)

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    A New Species of Dorcadion (Cribridorcadion) (Coleoptera: Cerambycidae) in Turkey

    No full text

    A Cytogenetic Study of Vadonia Unipunctata (Coleoptera: Cerambycidae) and Its Distribution in Turkey

    No full text
    WOS: 000298451200010The paper gives the results of the first cytogenetic study of Vadonia unipunctata (F. 1787) on the basis of the mitotic metaphase plate, karyogram, and the male genitalia. The distribution of this species in Turkey is also presented.Gazi UniversityGazi University [05/2008-44]This work was supported by a project of Gazi University (05/2008-44). The data were derived from the Ph.D. Thesis of A. Y. Okutaner

    Replacement name for the preoccupied genus group name Illiesiella WAGNER, 1985 (Diptera: Empididae)

    No full text
    A replacement name, Neoilliesiella is proposed for the subgenus name Heleodromia (Illiesiella) Wagner, 1985 in the fly family Empididae (Diptera)

    Additional records of the distribution and occurrence of carabid beetles (Coleoptera: Carabidae) in Turkey

    No full text
    Forty-nine species/subspecies of carabid beetles (Coleoptera: Carabidae) were identified from specimens previously collected from several locations in Turkey. The identified specimens represented the subfamilies Carabinae (Tribe Carabini), Nebriinae (Tribe Notiophilini), Trechinae (Tribe Bembidiini), Pterostichinae (Tribes Agonini, Pterostichini, Zabrini), Harpalinae (Tribe Harpalini), Callistinae (Tribes Licinini, Callistini), Lebiinae (Tribe Lebiini), and Brachininae (Tribe Brachinini). The majority (n = 20) of species/subspecies represented the subfamily Harpalinae. All species/subspecies identified had been previously reported from Turkey; however, the reported distribution of each was expanded into additional provinces with this study. The majority of the new records were from Nigde (n = 24) and Ankara (n = 15). Other new records were from Aksaray (5), Nevsehir (3), Sinop (2), Samsun (2), Rize (2), Afyon (1), Konya (1), and Kayseri (1). These data add to our knowledge of carabid distribution in Turkey
    corecore