17 research outputs found

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model

    Get PDF
    The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community

    Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing

    No full text
    CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC

    Long-term depression of temporoammonic-CA1 hippocampal synaptic transmission

    No full text
    The temporoammonic pathway, the direct projection from layer III of the entorhinal cortex to area CA1 of the hippocampus, includes both excitatory and inhibitory components that are positioned to be an important source of modulation of the hippocampal output. However, little is known about synaptic plasticity in this pathway. We used field recordings in hippocampal slices prepared from mature (6- to 8-wk old) rats to study long-term depression (LTD) in the temporoammonic pathway. Low-frequency (1 Hz) stimulation (LFS) for 10 min resulted in a depression of the field response that lasted for >/=1 h. This depression was saturable by multiple applications of LFS. LTD induction was unaffected by the blockade of either fast (GABAA) or slow (GABAB) inhibition. Temporoammonic LTD was inhibited by the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist AP5, suggesting a dependence on calcium influx. Full recovery from depression could be induced by high-frequency (100 Hz) stimulation (HFS); in the presence of the GABAA antagonist bicuculline, HFS induced recovery above the original baseline level. Similarly, HFS or theta-burst stimulation (TBS) applied to naive slices caused little potentiation, whereas HFS or TBS applied in the presence of bicuculline resulted in significant potentiation of the temporoammonic response. Our results show that, unlike the Schaffer collateral input to CA1, the temporoammonic input in mature animals is easy to depress but difficult to potentiate
    corecore