5,063 research outputs found

    Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies

    Full text link
    Geant4 low energy extensions have been used to simulate the X-ray spectra of industrial X-ray tubes with filters for removing the uncertain low energy part of the spectrum in a controlled way. The results are compared with precisely measured X-ray spectra using a silicon drift detector. Furthermore, this paper shows how the different dose rates in silicon and silicon dioxide layers of an electronic device can be deduced from the simulations

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Confocal Laser Scanning Microscopy for Detection of Schistosoma mansoni Eggs in the Gut of Mice

    Get PDF
    Background: The gold standard for diagnosing Schistosoma mansoni infections is the detection of eggs from stool or biopsy specimens. The viability of collected eggs can be tested by the miracidium hatching procedure. Direct detection methods are often limited in patients with light or early infections, whereas serological tests and PCR methods fail to differentiate between an inactive and persistent infection and between schistosomal species. Recently, confocal laser scanning microscopy (CLSM) has been introduced as a diagnostic tool in several fields of medicine. In this study we evaluated CLSM for the detection of viable eggs of S. mansoni directly within the gut of infected mice. Methodology/Principal Findings: The confocal laser scanning microscope used in this study is based on the Heidelberg Retina Tomograph II scanning laser system in combination with the Rostock Cornea Module (image modality 1) or a rigid endoscope (image modality 2). Colon sections of five infected mice were examined with image modalities 1 and 2 for schistosomal eggs. Afterwards a biopsy specimen was taken from each colon section and examined by bright-field microscopy. Visualised eggs were counted and classified in terms of viability status. Conclusions/Significance: We were able to show that CLSM visualises eggs directly within the gut and permits discrimination of schistosomal species and determination of egg viability. Thus, CLSM may be a suitable non-invasive too

    Ultrahigh field MRI determination of water diffusion rates in ex vivo human lenses of different age

    Get PDF
    BACKGROUND: The development of presbyopia is correlated with increased lens stiffness. To reveal structural changes with age, ultrahigh field magnetic resonance imaging (UHF-MRI) was used to analyze water diffusion in differently aged human lenses ex vivo. METHODS: After enucleation lens extractions were performed. Lenses were photographed, weighed, and embedded in 0.5% agarose dissolved in culture medium. UHF-MRI was conducted to analyze anatomical characteristics of the lens using T2-weighted Turbo-RARE imaging and to obtain apparent diffusion coefficients (ADC) measurements. A Gaussian fit routine was used to examine the ADC histograms. RESULTS: An age-dependent increase in lens wet weight, lens thickness, and lens diameter was found (P<0.001). T2-weighted images revealed a hyperintense lens cortex and a gradually negative gradient in signal intensity towards the nucleus. ADC histograms of the lens showed bimodal distributions (lower ADC values mainly located in the nucleus and higher ADC values mainly located in the cortex), which did not change significantly with age [βPeak1=1.96E-7 (-20E-7, 10E-7), P=0.804 or βPeak2=15.4E-7 (-10E-7, 40E-7), P=0.276; respectively]. CONCLUSIONS: Clinically relevant age dependent lens hardening is probably not correlated with ADC changes within the nucleus, which could be confirmed by further measurements

    Ophthalmic magnetic resonance imaging at 7.0 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses

    Get PDF
    OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7.0 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7.0 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 +- 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 +- 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7.0 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7.0 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore