82 research outputs found
An Automated Cluster Finder: the Adaptive Matched Filter
We describe an automated method for detecting clusters of galaxies in imaging
and redshift galaxy surveys. The Adaptive Matched Filter (AMF) method utilizes
galaxy positions, magnitudes, and---when available---photometric or
spectroscopic redshifts to find clusters and determine their redshift and
richness. The AMF can be applied to most types of galaxy surveys: from
two-dimensional (2D) imaging surveys, to multi-band imaging surveys with
photometric redshifts of any accuracy (2.5D), to three-dimensional (3D)
redshift surveys. The AMF can also be utilized in the selection of clusters in
cosmological N-body simulations. The AMF identifies clusters by finding the
peaks in a cluster likelihood map generated by convolving a galaxy survey with
a filter based on a model of the cluster and field galaxy distributions. In
tests on simulated 2D and 2.5D data with a magnitude limit of r' ~ 23.5,
clusters are detected with an accuracy of Delta z ~ 0.02 in redshift and ~10%
in richness to z < 0.5. Detecting clusters at higher redshifts is possible with
deeper surveys. In this paper we present the theory behind the AMF and describe
test results on synthetic galaxy catalogs.Comment: 32 pages, 12 figures, accepted to Ap
Identification of Immunogenic Salmonella enterica Serotype Typhi Antigens Expressed in Chronic Biliary Carriers of S. Typhi in Kathmandu, Nepal
Background: Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage. Methodology/Principal Findings To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479), an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70%) chronic carriers, 0 of 8 bile culture-negative controls (0%), 0 of 8 healthy Bangladeshis (0%), and 1 of 8 (12.5%) Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present. Conclusions/Significance: Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic S. Typhi carriers
The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year
spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of
the key goals of BOSS is to measure the signature of baryon acoustic
oscillations in the distribution of Ly-alpha absorption from the spectra of a
sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter
distance at z\approx2.5, BOSS will provide the first direct measurement of the
expansion rate of the Universe at z > 2. One of the biggest challenges in
achieving this goal is an efficient target selection algorithm for quasars over
2.2 < z < 3.5, where their colors overlap those of stars. During the first year
of the BOSS survey, quasar target selection methods were developed and tested
to meet the requirement of delivering at least 15 quasars deg^-2 in this
redshift range, out of 40 targets deg^-2. To achieve these surface densities,
the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85.
While detection of the BAO signature in the Ly-alpha absorption in quasar
spectra does not require a uniform target selection, many other astrophysical
studies do. We therefore defined a uniformly-selected subsample of 20 targets
deg^-2, for which the selection efficiency is just over 50%. This "CORE"
subsample will be fixed for Years Two through Five of the survey. In this paper
we describe the evolution and implementation of the BOSS quasar target
selection algorithms during the first two years of BOSS operations. We analyze
the spectra obtained during the first year. 11,263 new z>2.2 quasars were
spectroscopically confirmed by BOSS. Our current algorithms select an average
of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS
imaging. Multi-epoch optical data and data at other wavelengths can further
improve the efficiency and completeness of BOSS quasar target selection.
[Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars.
Submitted to Ap
Recommended from our members
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample
We present measurements of galaxy clustering from the Baryon Oscillation
Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III
(SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains
264,283 massive galaxies covering 3275 square degrees with an effective
redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance
Lambda-CDM cosmological model, this sample covers an effective volume of 2.2
Gpc^3, and represents the largest sample of the Universe ever surveyed at this
density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy
correlation function and power spectrum, including density-field reconstruction
of the baryon acoustic oscillation (BAO) feature. The acoustic features are
detected at a significance of 5\sigma in both the correlation function and
power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the
detection significance increases to 6.7\sigma. Fitting for the position of the
acoustic features measures the distance to z=0.57 relative to the sound horizon
DV /rs = 13.67 +/- 0.22 at z=0.57. Assuming a fiducial sound horizon of 153.19
Mpc, which matches cosmic microwave background constraints, this corresponds to
a distance DV(z=0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most
precise distance constraint ever obtained from a galaxy survey. We place this
result alongside previous BAO measurements in a cosmological distance ladder
and find excellent agreement with the current supernova measurements. We use
these distance measurements to constrain various cosmological models, finding
continuing support for a flat Universe with a cosmological constant.Comment: 33 page
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
- …