187 research outputs found

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at s=200\sqrt{s} = 200 GeV

    Get PDF
    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (1η+2-1 \leq \eta \leq +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.Comment: 6 pages total, 1 Latex file, 3 PS files with figure

    Transitions of cardio-metabolic risk factors in the Americas between 1980 and 2014

    Get PDF
    Describing the prevalence and trends of cardiometabolic risk factors that are associated with non-communicable diseases (NCDs) is crucial for monitoring progress, planning prevention, and providing evidence to support policy efforts. We aimed to analyse the transition in body-mass index (BMI), obesity, blood pressure, raised blood pressure, and diabetes in the Americas, between 1980 and 2014

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at √s = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry ALL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at √s=200  GeV. The cross section data cover transverse momenta

    Two-particle correlations on transverse momentum and momentum dissipation in Au-Au collisions at sqrt(sNN) = 130 GeV

    Get PDF
    Measurements of two-particle correlations on transverse momentum pt for Au–Au collisions at GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with 0.15 ≤ pt ≤ 2 GeV/c and pseudorapidity |η| ≤ 1.3. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-pt fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large pt values while negative correlations occur for pairs in which one particle has large pt and the other has much lower pt. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower pt

    The energy dependence of p\u3csub\u3et\u3c/sub\u3e angular correlations inferred from mean-p\u3csub\u3et\u3c/sub\u3e fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of pt angular correlations inferred from event-wise mean transverse momentum pt fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies , 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. pt angular correlation structure suggests that the principal source of pt correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with from the onset of observable jet-related pt fluctuations near 10 GeV

    Scaling Properties of Hyperon Production in Au + Au Collisions at √sNN = 200  GeV

    Get PDF
    We present the scaling properties of Λ, Ξ, and Ω in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sNN−−−−√=200  GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Λ, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor γs approaches unity for the most central collisions. Moreover, the nuclear modification factors of p, Λ, and Ξ are consistent with each other for
    corecore