
ar
X

iv
:0

70
5.

46
29

v2
  [

he
p-

ex
] 

 4
 O

ct
 2

00
7

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in

Proton-Proton Collisions at
√

s = 200 GeV

B.I. Abelev,9 M.M. Aggarwal,30 Z. Ahammed,45 B.D. Anderson,20 D. Arkhipkin,13 G.S. Averichev,12

Y. Bai,28 J. Balewski,17 O. Barannikova,9 L.S. Barnby,2 J. Baudot,18 S. Baumgart,50 V.V. Belaga,12

A. Bellingeri-Laurikainen,40 R. Bellwied,48 F. Benedosso,28 R.R. Betts,9 S. Bhardwaj,35 A. Bhasin,19 A.K. Bhati,30

H. Bichsel,47 J. Bielcik,50 J. Bielcikova,50 L.C. Bland,3 S-L. Blyth,22 M. Bombara,2 B.E. Bonner,36

M. Botje,28 J. Bouchet,40 A.V. Brandin,26 T.P. Burton,2 M. Bystersky,11 X.Z. Cai,39 H. Caines,50

M. Calderón de la Barca Sánchez,6 J. Callner,9 O. Catu,50 D. Cebra,6 M.C. Cervantes,41 Z. Chajecki,29

P. Chaloupka,11 S. Chattopadhyay,45 H.F. Chen,38 J.H. Chen,39 J.Y. Chen,49 J. Cheng,43 M. Cherney,10

A. Chikanian,50 W. Christie,3 S.U. Chung,3 R.F. Clarke,41 M.J.M. Codrington,41 J.P. Coffin,18 T.M. Cormier,48

M.R. Cosentino,37 J.G. Cramer,47 H.J. Crawford,5 D. Das,45 S. Dash,15 M. Daugherity,42 M.M. de Moura,37

T.G. Dedovich,12 M. DePhillips,3 A.A. Derevschikov,32 L. Didenko,3 T. Dietel,14 P. Djawotho,17 S.M. Dogra,19

X. Dong,22 J.L. Drachenberg,41 J.E. Draper,6 F. Du,50 V.B. Dunin,12 J.C. Dunlop,3 M.R. Dutta Mazumdar,45

W.R. Edwards,22 L.G. Efimov,12 V. Emelianov,26 J. Engelage,5 G. Eppley,36 B. Erazmus,40 M. Estienne,18

P. Fachini,3 R. Fatemi,23 J. Fedorisin,12 A. Feng,49 P. Filip,13 E. Finch,50 V. Fine,3 Y. Fisyak,3 J. Fu,49

C.A. Gagliardi,41 L. Gaillard,2 M.S. Ganti,45 E. Garcia-Solis,9 V. Ghazikhanian,7 P. Ghosh,45 Y.N. Gorbunov,10

H. Gos,46 O. Grebenyuk,28 D. Grosnick,44 B. Grube,34 S.M. Guertin,7 K.S.F.F. Guimaraes,37 A. Gupta,19

N. Gupta,19 B. Haag,6 T.J. Hallman,3 A. Hamed,41 J.W. Harris,50 W. He,17 M. Heinz,50 T.W. Henry,41

S. Heppelmann,31 B. Hippolyte,18 A. Hirsch,33 E. Hjort,22 A.M. Hoffman,23 G.W. Hoffmann,42 D.J. Hofman,9

R.S. Hollis,9 M.J. Horner,22 H.Z. Huang,7 E.W. Hughes,4 T.J. Humanic,29 G. Igo,7 A. Iordanova,9 P. Jacobs,22

W.W. Jacobs,17 P. Jakl,11 P.G. Jones,2 E.G. Judd,5 S. Kabana,40 K. Kang,43 J. Kapitan,11 M. Kaplan,8

D. Keane,20 A. Kechechyan,12 D. Kettler,47 V.Yu. Khodyrev,32 J. Kiryluk,22 A. Kisiel,29 E.M. Kislov,12

S.R. Klein,22 A.G. Knospe,50 A. Kocoloski,23 D.D. Koetke,44 T. Kollegger,14 M. Kopytine,20 L. Kotchenda,26

V. Kouchpil,11 K.L. Kowalik,22 P. Kravtsov,26 V.I. Kravtsov,32 K. Krueger,1 C. Kuhn,18 A.I. Kulikov,12

A. Kumar,30 P. Kurnadi,7 A.A. Kuznetsov,12 M.A.C. Lamont,50 J.M. Landgraf,3 S. Lange,14 S. LaPointe,48

F. Laue,3 J. Lauret,3 A. Lebedev,3 R. Lednicky,13 C-H. Lee,34 S. Lehocka,12 M.J. LeVine,3 C. Li,38 Q. Li,48 Y. Li,43

G. Lin,50 X. Lin,49 S.J. Lindenbaum,27 M.A. Lisa,29 F. Liu,49 H. Liu,38 J. Liu,36 L. Liu,49 T. Ljubicic,3

W.J. Llope,36 R.S. Longacre,3 W.A. Love,3 Y. Lu,49 T. Ludlam,3 D. Lynn,3 G.L. Ma,39 J.G. Ma,7 Y.G. Ma,39

D.P. Mahapatra,15 R. Majka,50 L.K. Mangotra,19 R. Manweiler,44 S. Margetis,20 C. Markert,42 L. Martin,40

H.S. Matis,22 Yu.A. Matulenko,32 T.S. McShane,10 A. Meschanin,32 J. Millane,23 M.L. Miller,23 N.G. Minaev,32

S. Mioduszewski,41 A. Mischke,28 J. Mitchell,36 B. Mohanty,22 D.A. Morozov,32 M.G. Munhoz,37 B.K. Nandi,16

C. Nattrass,50 T.K. Nayak,45 J.M. Nelson,2 C. Nepali,20 P.K. Netrakanti,33 L.V. Nogach,32 S.B. Nurushev,32

G. Odyniec,22 A. Ogawa,3 V. Okorokov,26 D. Olson,22 M. Pachr,11 S.K. Pal,45 Y. Panebratsev,12 A.I. Pavlinov,48

T. Pawlak,46 T. Peitzmann,28 V. Perevoztchikov,3 C. Perkins,5 W. Peryt,46 S.C. Phatak,15 M. Planinic,51

J. Pluta,46 N. Poljak,51 N. Porile,33 A.M. Poskanzer,22 M. Potekhin,3 E. Potrebenikova,12 B.V.K.S. Potukuchi,19

D. Prindle,47 C. Pruneau,48 N.K. Pruthi,30 J. Putschke,22 I.A. Qattan,17 R. Raniwala,35 S. Raniwala,35 R.L. Ray,42

D. Relyea,4 A. Ridiger,26 H.G. Ritter,22 J.B. Roberts,36 O.V. Rogachevskiy,12 J.L. Romero,6 A. Rose,22

C. Roy,40 L. Ruan,3 M.J. Russcher,28 R. Sahoo,15 I. Sakrejda,22 T. Sakuma,23 S. Salur,50 J. Sandweiss,50

M. Sarsour,41 P.S. Sazhin,12 J. Schambach,42 R.P. Scharenberg,33 N. Schmitz,24 J. Seger,10 I. Selyuzhenkov,48

P. Seyboth,24 A. Shabetai,18 E. Shahaliev,12 M. Shao,38 M. Sharma,30 W.Q. Shen,39 S.S. Shimanskiy,12

E.P. Sichtermann,22 F. Simon,23 R.N. Singaraju,45 N. Smirnov,50 R. Snellings,28 P. Sorensen,3 J. Sowinski,17

J. Speltz,18 H.M. Spinka,1 B. Srivastava,33 A. Stadnik,12 T.D.S. Stanislaus,44 D. Staszak,7 J. Stevens,17

R. Stock,14 M. Strikhanov,26 B. Stringfellow,33 A.A.P. Suaide,37 M.C. Suarez,9 N.L. Subba,20 M. Sumbera,11

X.M. Sun,22 Z. Sun,21 B. Surrow,23 T.J.M. Symons,22 A. Szanto de Toledo,37 J. Takahashi,37 A.H. Tang,3

T. Tarnowsky,33 J.H. Thomas,22 A.R. Timmins,2 S. Timoshenko,26 M. Tokarev,12 T.A. Trainor,47 S. Trentalange,7

R.E. Tribble,41 O.D. Tsai,7 J. Ulery,33 T. Ullrich,3 D.G. Underwood,1 G. Van Buren,3 N. van der Kolk,28

M. van Leeuwen,22 A.M. Vander Molen,25 R. Varma,16 I.M. Vasilevski,13 A.N. Vasiliev,32 R. Vernet,18

S.E. Vigdor,17 Y.P. Viyogi,15 S. Vokal,12 S.A. Voloshin,48 M. Wada,10 W.T. Waggoner,10 F. Wang,33 G. Wang,7

J.S. Wang,21 X.L. Wang,38 Y. Wang,43 J.C. Webb,44 G.D. Westfall,25 C. Whitten Jr.,7 H. Wieman,22

S.W. Wissink,17 R. Witt,50 J. Wu,38 Y. Wu,49 N. Xu,22 Q.H. Xu,22 Z. Xu,3 P. Yepes,36 I-K. Yoo,34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71318321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0705.4629v2


2

Q. Yue,43 V.I. Yurevich,12 M. Zawisza,46 W. Zhan,21 H. Zhang,3 W.M. Zhang,20 Y. Zhang,38 Z.P. Zhang,38

Y. Zhao,38 C. Zhong,39 J. Zhou,36 R. Zoulkarneev,13 Y. Zoulkarneeva,13 A.N. Zubarev,12 and J.X. Zuo39

(STAR Collaboration)
1Argonne National Laboratory, Argonne, Illinois 60439

2University of Birmingham, Birmingham, United Kingdom
3Brookhaven National Laboratory, Upton, New York 11973

4California Institute of Technology, Pasadena, California 91125
5University of California, Berkeley, California 94720

6University of California, Davis, California 95616
7University of California, Los Angeles, California 90095

8Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
9University of Illinois at Chicago, Chicago, Illinois 60607

10Creighton University, Omaha, Nebraska 68178
11Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic
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We report the first measurement of the opening angle distribution between pairs of jets produced
in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) corre-
lations between the transverse spin orientation of a proton and the transverse momentum directions
of its partons. With both beams polarized, the wide pseudorapidity (−1 ≤ η ≤ +2) coverage for jets
permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries
are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive
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deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with
the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

PACS numbers: 13.75.cs, 13.87.-a, 13.88.+e, 24.70.+s

Hard scattering of light quarks has little sensitivity to
one quark’s spin orientation transverse to the scattering
plane, due to helicity conservation (chiral symmetry) in
the limit of zero quark mass for both quantum chromody-
namics (QCD) and electrodynamics. Nonetheless, sizable
sensitivity to the transverse spin of a proton has been ob-
served at high energies in both semi-inclusive deep inelas-
tic scattering (SIDIS) of electrons [1] and proton-proton
collision processes with cross sections well described by
perturbative QCD (pQCD) [2]. Theoretical interpreta-
tions of these results [3] attribute them to a combina-
tion of soft QCD spin-dependent features of the proton
wave function and of the final-state fragmentation of the
struck quark into a hadron jet. Experiments that can
unravel these contributions are essential to understand
high-energy hadron spin dynamics.

Of particular interest, since it arises from orbital con-
tributions to the proton spin [4], is the Sivers effect [5]:

a correlation (〈~sp · (~pp × ~kT )〉 6= 0) of initial-state par-

ton transverse momentum (~kT ) with the proton’s spin
(~sp) and momentum (~pp). This three-vector correlation
evades time-reversal violation when orbital components
of the proton’s light-cone wave function combine with
initial (ISI) and/or final-state interaction (FSI) contri-
butions to the scattering process [4, 6]. In the spirit of
pQCD factorization of hadron cross sections, the Sivers
effect involves parton distribution (Sivers) functions that

depend on both ~kT and longitudinal momentum fraction
xB . In contrast to ordinary factorization, gauge invari-
ance demands that Sivers functions incorporate pQCD-
calculable, but process-dependent, “gauge link factors”
describing the partonic ISI/FSI. These lead to a predicted
sign change between SIDIS and Drell-Yan processes [6, 7].

A non-zero Sivers effect revealed [8] in SIDIS pion pro-
duction from a transversely polarized proton target can
be fitted with Sivers functions of opposite sign and dif-
ferent magnitude for u vs. d quarks [3]. This account
can be tested by treating within a common framework
Sivers asymmetries measured for other pQCD processes,
such as jet production in pp collisions [9]. For colliding
proton beams moving along the ±ẑ-axis and vertically
(±ŷ) polarized, the Sivers effect gives a preferential side-
ways (±x̂) kinematic boost to jet momenta, causing [10]
a spin-dependent average deviation from 180◦ azimuthal
opening angle between jets from a hard two-body parton
scattering. We report the first measurement of this di-jet
asymmetry, which probes gluon, as well as quark, Sivers
functions. The data were taken in 2006 with

√
s = 200

GeV transversely polarized proton beams at the Rela-
tivistic Heavy-Ion Collider (RHIC), providing 1.1 pb−1

of luminosity integrated by the STAR detector [11].
Continuous operation of two Siberian snakes [12] in

each RHIC ring guaranteed that the beam polarizations
were vertical at STAR. The spin orientation alternated
for each successive bunch of one beam and for each pair
of bunches of the other. Four distinct alternation pat-
terns were used for different beam stores to minimize false
asymmetries from accidental correlations of beam proper-
ties with bunch number. Beam polarizations, monitored
during each store by proton-carbon Coulomb-nuclear in-
terference polarimeters [13], averaged 59% (57%) for the
+ẑ (−ẑ) beam for this analysis, with statistical uncer-
tainties far smaller than the ±12% relative uncertainty
in the (online) polarimeter calibration.

The detector subsystems critical to the present mea-
surements are the barrel (BEMC) and endcap (EEMC)
electromagnetic calorimeters [11], with full azimuthal
(φ) coverage spanning pseudorapidities |η| ≤ 0.98 and
1.08 ≤ η ≤ 2.0, respectively. The EMC’s are subdivided
into towers that subtend small regions in ∆η and ∆φ.
Tower gains are calibrated, to a precision ≈ ±5% to date,
with minimum-ionizing particles and electrons tracked
with STAR’s time projection chamber (TPC). Digitized
tower signals are summed in STAR trigger hardware over
∆η × ∆φ ≈ 1.0 × 1.0 “jet patches”. The hardware trig-
gers used required: (1) a transverse energy sum ET > 4.0
GeV for at least one BEMC or EEMC jet patch; (2)
Etot

T > 14 GeV summed over the full EMC; and (3) co-
incident signals indicating a valid collision from forward
(3.3 ≤ |η| ≤ 5.0) beam-beam counters (BBC) at each end
of the STAR detector [14]. A software (level 2) trigger
then passed only that subset of events with at least two
localized (to ∆η × ∆φ = 0.6 × 0.6) EMC energy deposi-
tions, with ET1(2) ≥ 3.6 (3.3) GeV and |φ1 − φ2| ≥ 60◦.

The trigger selectivity for di-jets is illustrated in Fig.
1(a-c) by EMC information from the level 2 processor.
The azimuthal angles φ1,2 (referred to the horizontal +x̂-
axis in the STAR coordinate frame) and pseudorapidities
η1,2 (measured with respect to +ẑ) of the two jet axes are
obtained from ET -weighted centroids of the EMC tower
locations in the level 2 jet clusters. The η values use an
event vertex determined with coarse resolution (σz ≈ 30
cm) from the time difference between the two BBC’s.
The correlation in Fig. 1(a) is dominated by intense di-
jet ridges centered around |φ1 − φ2| = 180◦.

Initial-state ~kT is manifested in a given event by a tilt
of the jet axes, characterized by the deviation |φ1−φ2|−
180◦ and the di-jet bisector angle φb. The Sivers analysis
combines these features in a “signed” azimuthal opening
angle ζ, chosen > 180◦ when cosφb > 0 (implying kx

T >
0) and < 180◦ otherwise. STAR’s left-right symmetric di-
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FIG. 1: Distributions of events that pass the STAR di-jet
trigger with respect to (a) di-jet azimuthal angles, (b) signed
azimuthal opening angle (ζ), and (c) pseudorapidity sum, all
using EMC energies only. The pT distribution (d) is from full
jet reconstruction for 2% of all runs analyzed. The fit in (b)
is from fast Monte-Carlo simulations described in the text.

jet acceptance, reflected in the ζ symmetry in Fig. 1(b),
minimizes systematic errors in our Sivers asymmetries.

The ζ distribution shape is well reproduced by “fast”
Monte-Carlo (MC) simulations discussed below. The
peak width (σζ ≈ 20◦) is dominated by intrinsic kT distri-
butions of the scattering partons, with smaller φ resolu-
tion contributions from the use of EMC energy alone for
partial jet reconstruction (σEMC−full

φ = 3.9◦), and from
deviations between parent parton directions and even
fully reconstructed jet axes (σfull−parton

φ = 5.0◦). These
resolutions were determined, respectively, from the data
themselves and from simulations utilizing the PYTHIA
6.205 event generator [15] and GEANT [16] modeling of
the detector response. In the first case we compared, for
a small sample of runs, the φ, ζ and η values (the lat-
ter yielding σEMC−full

η = 0.07) determined at trigger level
and from full jet reconstruction including offline gain cal-
ibrations and TPC tracks. Full reconstruction, following
the approach in [9], but with a jet cone radius of 0.6 and
pT threshold of 4.0 GeV, does not greatly improve the
net parton directional resolution (σEMC−parton

φ = 6.3◦).
Thus, the trigger-level di-jet analysis reported here is suf-
ficient to explore initial results and their implications for
theoretical descriptions of the Sivers effect.

The transverse momentum (pT ) distribution from full
jet reconstruction (Fig. 1(d)) indicates dominance of par-
tons with xT ≡ 2pT /

√
s ≈ 0.05 − 0.10. The actual xB

range probed is broad due to the η coverage in Fig. 1(c).
In a leading-order parton-parton scattering interpreta-
tion, η1 +η2 = ln(x+z

B /x−z
B ). The range 2 < (η1 +η2) < 3

is then primarily sensitive to x+z
B ≈ 0.1 − 0.4, x−z

B ≈
0.01 − 0.04, so that the two beams provide complemen-

2000

4000

6000

8000

10000
a)

0

 100 140 180 220 260

-0.1

-0.05

0

0.05

0.1
b)

ζ (deg)

C
o
u
n
ts

A
  
 (

ζ
) 

=
 

N

N
(+

) 
−
 N

(−
)

N
(+

) 
+

 N
(−

)

spin +
spin −

<k  > = 100

       MeV/c
T
x

20 40 60 80 100
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

1

2

3

4

5c)

Sivers <k  >  (MeV/c)T
x

δζ

A  (ζ>π)
N

A
  

 (
ζ
 >

 π
)

N

with φ smearing

A  (ζ>π)N

without φ 

smearing

δ
ζ
 =

 <
ζ
(+

)>
 −

 <
ζ
(−

)>
  (d

e
g

)

Fast MC Simulations

FIG. 2: Fast MC simulations of di-jet Sivers asymmetries:
(a) the ζ spectra for two beam spins and (b) the resulting
yield asymmetry vs ζ for an assumed spin-dependent centroid
shift ±〈kx

T 〉 = ±100 MeV/c. (c) The spin-dependent ζ cen-
troid shift (right scale) and ζ -integrated analyzing power (left
scale) vs assumed 〈kx

T 〉, including (solid line) and excluding
(dashed) φ resolution smearing of the reconstructed jet.

tary information on valence- and sea-dominated regions.

Fast MC simulations in Fig. 2 illustrate some Sivers
asymmetry measures. Two-parton scattering events were
generated with a uniform distribution in φ1 (and |φ2 −
φ1| = 180◦) and a pT distribution reproducing Fig. 1(d).

Each parton was given a random initial-state ~kT drawn
from a model distribution centered about zero for the y-
component, but about ±〈kx

T 〉 for the x-component in a
polarized proton, with the sign correlated with ~sp × ~pp

to simulate the Sivers effect. The sum ~k+z
T + ~k−z

T was
added to the initially thrown outgoing momenta to de-
duce boosted azimuthal angles that could then be further
smeared with a Gaussian of σEMC−parton

φ = 6.3◦.

For Figs. 1(b) and 2, the model kT distribution com-
bines a Gaussian peak with symmetric exponential tails
enhancing larger |kx,y

T |, as needed to reproduce the
roughly flat ζ spectrum wings. Full event reconstruction
shows these wings to be dominated by multi-jet events,
reflecting higher-order pQCD processes, where only the
two jets with highest EMC energy were analyzed at level
2. With φ smearing included, the kT distribution fitted
to Fig. 1(b) has an rms width 〈(kx,y

T )2〉1/2 = 1.26 GeV/c,
consistent with the trend of earlier particle correlation
results [17] from pp collisions. The linear relationship of
single-spin observables to 〈kx

T 〉 seen in Fig. 2(c) is rather
insensitive to details of the kT distribution shape.

Figures 2(a,b) show that the primary Sivers manifes-
tation is a spin-dependent ζ centroid shift, leading to a
spin up vs. down yield asymmetry antisymmetric about
ζ = 180◦, as predicted in [10]. We sort real data into sta-
tistically independent ζ distributions for the four beam
spin combinations ++, etc., where the first (second) in-
dex is the sign of the ŷ polarization component at STAR
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for the +ẑ (−ẑ) beam. To compare with predictions in-
tegrated over the kT distributions, we extract analyzing
powers A±z

N (ζ > π) averaged over ζ and φb, by fitting
asymmetries measured for individual | cosφb| bins:

fP±z| cosφb|A±z
N (ζ >π) = [r±z(φb)−1]/[r±z(φb)+1], (1)

where the cross-ratios r exploit the antisymmetry in Fig.
2(b) by treating di-jet yields Nij with spin-up and ζ > π
as equivalent to spin-down, ζ < π. For example:

r+z(φb) ≡
√

∑

N+j(ζ >π, φb)
∑

N−j(ζ >π, φb)
·
∑

N−j(ζ <π, φb)
∑

N+j(ζ <π, φb)
, (2)

where sums extend over −ẑ-beam spin states j = +,−.
The cross-ratio eliminates the need for independent rela-
tive luminosities for different spin combinations and can-
cels several potential systematic errors. (P±z)| cosφb| de-
notes beam polarization components normal to the di-
jet bisector within each | cosφb| bin. The factor f =
0.85± 0.07 in Eq. 1 corrects for dilution of a parton-level
asymmetry by φ resolution smearing (compare solid and
dashed lines in Fig. 2(c)), with an uncertainty to allow
for model-dependence in determining f from simulations.
The equivalent of Eq. 2 for r−z has yields Ni−(ζ > π)
(summed over +ẑ-beam spin states i) in the numerator.

This gives AN >0 when ~kT points preferentially leftward
for a spin-up beam, following the Madison [18], rather
than the opposite Trento [19] convention used in [3].

The measured asymmetries, integrated over |ζ − π| ≤
68◦, are compared to calculations [20] in Fig. 3. The
systematic error bands combine in quadrature the f un-
certainty and the effect of multi-jet contributions to the
ζ distribution wings. Limits on the latter effect are de-
duced by looking for variations in r±z , beyond statisti-
cal fluctuations, when we extract yields alternatively by
changing the ζ integration range or subtracting a con-
stant baseline fitted to the ζ wings independently for each
spin state. We neglect much smaller instrumental asym-
metries from bunch-to-bunch variations in beam path or
in azimuthally localized beam background.

The measured asymmetries are consistent with zero,
and remain so for higher software EMC ET thresholds.
BBC yields analyzed with the same code reproduce the
associated non-zero asymmetry [14] in both magnitude
and sign. Our results are an order of magnitude smaller
than π+ SIDIS Sivers asymmetries [8], for predominant
di-jet sensitivity (see Fig. 3(a-b)) to both high-xB quarks
(A+z

N (η1 + η2
>∼ 2)) and low-xB gluons (A−z

N (η1 + η2
>∼

2)). The η-integrated sample (2.6×106 di-jet events) has
mean 〈A±z

N (ζ > π)〉 = 0 within statistical uncertainties
≈ ±0.002, probing (see Fig. 2(c)) Sivers 〈kx

T 〉 preferences
as small as ∼ ±3 MeV/c, or ±0.2% of 〈(kx,y

T )2〉1/2.
Recent theory breakthroughs [22, 23] and our prelimi-

nary results [24] have stimulated rapid evolution in treat-
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FIG. 3: Measured and calculated asymmetries vs. di-jet pseu-
dorapidity sum for +ẑ (left) and −ẑ (right) beams. (a,b):
Fraction of the calculated di-jet cross section with a quark
(gluon) from the +ẑ (−ẑ) beam. (c,d): Unweighted asymme-
tries compared with pQCD calculations [20] (histograms) for
two models of quark Sivers functions fitted to SIDIS results
[8]. (e,f): Asymmetries for | sin ζ|-weighted yields, compared
with calculations [20, 21] based on twist-3 quark-gluon corre-
lations. Vertical (horizontal) bars on the data indicate statis-
tical uncertainties (bin widths). The systematic error bands
exclude a ±12% beam polarization normalization uncertainty.

ments of transverse single-spin asymmetries (SSA). Bac-
chetta et al. [22] deduced the gauge link structure for
hadron or jet production in pp collisions, where both ISI
and FSI contribute, with opposite phases. Ji et al. [23]
demonstrated strong overlap between Sivers effects and
twist-3 quark-gluon correlations (QGC) [25]. The pQCD
calculations [20] in Fig. 3 exploit these developments to
incorporate cancellations that were absent or less severe
in predictions [3] made before the measurements. The
calculations use one set of unpolarized distribution func-
tions, yielding the parton contribution fractions in Fig.
3(a-b), but three different models of u- and d-quark Sivers
functions in Figs. 3(c-f). All assume zero gluon Sivers
function. They are integrated over a pT range (5–10
GeV/c) well matched to our data, and further over the
STAR η acceptance [20]. We have reversed the sign of
the calculated AN to apply the Madison convention.

The calculations in Fig. 3(c-d) use [20] quark Sivers
functions fitted [3] to SIDIS data [8] with the d-quark
functional form tied either to u(xB) (VY1) or d(xB)
(VY2) unpolarized distribution functions. For η1+η2

>∼ 2
the A+z

N predictions reflect the sizable HERMES asym-
metries, diluted [20] by partial u vs d and ISI vs FSI (the
latter were missing in [3]) cancellations, while A−z

N ≈ 0
because gluon Sivers effects are ignored.

Figure 3(e-f) compares AN measured and calculated
[20] with yields in Eq. (2) weighted by | sin ζ| [21], as
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needed to connect to a more robustly interpretable gauge
link structure [22], given the apparent breakdown of fac-
torization for back-to-back dijets [26]. The measure-
ments, consistent with zero at all ζ, are hardly affected
by the weighting, but the calculations sample a different
Sivers function moment that can no longer be constrained
by unweighted SIDIS asymmetries. Taking constraints
instead from QGC fits [27] to AN for inclusive forward
hadron production in pp collisions [2, 28] gives di-jet AN

comparable in magnitude to our data, via more complete
ISI vs. FSI and u vs. d cancellations [20]. The u−d can-
cellation can be tested in the future by filtering quark
flavors with the leading hadron’s charge sign for each jet.

In summary, we report the first measured spin asym-
metries for di-jet production in pp collisions. The anal-
ysis searches for a spin-dependent sideways tilt of the
di-jet axes sensitive to Sivers correlations between the
proton’s transverse spin and transverse momentum pref-
erences of its partons. All measured asymmetries are con-
sistent with zero, whether dominated by partons in the
valence or sea regions. Perturbative QCD calculations
can reconcile these results with sizable SSA observed for
forward hadron production in pp and for semi-inclusive
deep inelastic scattering via cancelling contributions from
u and d quarks and from initial- and final-state interac-
tions. These data constrain unified theoretical accounts
for transverse SSA in hard pQCD processes, and their
connection to parton orbital momentum.
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