419 research outputs found
The differential influence of life stress on individual symptoms of depression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111765/1/acps12395.pd
Chytrid fungus infections in laboratory and introduced <i>Xenopus laevis </i>populations:assessing the risks for U.K. native amphibians
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigated transfer of infection into co-occurring native amphibian faunas. A survey of 27 U.K. institutions maintaining X. laevis for research showed that most laboratories have low-level infection, a risk for native species if animals are released into the wild. RT-PCR assays showed Bd in two introduced U.K. populations of X. laevis, in Wales and Lincolnshire. Laboratory and field studies demonstrated that infection levels increase with stress, especially low temperature. In the U.K., native amphibians may be exposed to intense transmission in spring when they enter ponds to spawn alongside X. laevis that have cold-elevated Bd infections. Exposure to cross-infection has probably been recurrent since the introduction of X. laevis, >20years in Lincolnshire and 50years in Wales. These sites provide an important test for assessing the impact of X. laevis on Bd spread. However, RT-PCR assays on 174 native amphibians (Bufo, Rana, Lissotriton and Triturus spp.), sympatric with the Bd-infected introduced populations, showed no foci of self-sustaining Bd transmission associated with X. laevis. The abundance of these native amphibians suggested no significant negative population-level effect after the decades of co-occurrence
The size of plume heterogeneities constrained by Marquesas isotopic stripes
International audienceThe scale and geometry of chemical and isotopic heterogeneities in the source of plumes have important scientific implications on the nature, composition and origin of plumes and on the dynamics of mantle mixing over time. Here, we address these issues through the study of Marquesas Islands, one of the Archipelagoes in Polynesia. We present new Sr, Nd, Pb, Hf isotopes as well as trace element data on lavas from several Marquesas Islands and demonstrate that this archipelago consists of two adjacent and distinct rows of islands with significantly different isotopic compositions. For the entire 5.5 Ma construction period, the northern islands, hereafter called the Ua Huka group, has had systematically higher 87Sr/86Sr and lower 206Pb/204Pb ratios than the southern Fatu Hiva group at any given 143Nd/144Nd value. The shape and curvature of mixing arrays preclude the ambient depleted MORB mantle as one of the mixing end-members. We believe therefore that the entire isotopic heterogeneity originates in the plume itself. We suggest that the two Marquesas isotopic stripes originate from partial melting of two adjacent filaments contained in small plumes or "plumelets" that came from a large dome structure located deep in the mantle under Polynesia. Low-degree partial melting under Marquesas and other "weak" Polynesian hot spot chains (Pitcairn-Gambier, Austral-Cook, Society) sample small areas of the dome and preserve source heterogeneities. In contrast, more productive hot spots build up large islands such as Big Island in Hawaii or RĂ©union Island, and the higher degrees of melting blur the isotopic variability of the plume source
Cascading effects of defaunation on the coexistence of two specialized insect seed predators
Identification of the mechanisms enabling stable coexistence of species with similar resource requirements is a central challenge in ecology. Such coexistence can be facilitated by species at higher trophic levels through complex multi-trophic interactions, a mechanism that could be compromised by ongoing defaunation. - We investigated cascading effects of defaunation on Pachymerus cardo and Speciomerus giganteus, the specialized insect seed predators of the Neotropical palm Attalea butyracea, testing the hypothesis that vertebrate frugivores and granivores facilitate their coexistence. - Laboratory experiments showed that the two seed parasitoid species differed strongly in their reproductive ecology. Pachymerus produced many small eggs that it deposited exclusively on the fruit exocarp (exterior). Speciomerus produced few large eggs that it deposited exclusively on the endocarp, which is normally exposed only after a vertebrate handles the fruit. When eggs of the two species were deposited on the same fruit, Pachymerus triumphed only when it had a long head start, and the loser always succumbed to intraguild predation. - We collected field data on the fates of 6569 Attalea seeds across sites in central Panama with contrasting degrees of defaunation and wide variation in the abundance of vertebrate frugivores and granivores. Speciomerus dominated where vertebrate communities were intact, whereas Pachymerus dominated in defaunated sites. Variation in the relative abundance of Speciomerus across all 84 sampling sites was strongly positively related to the proportion of seeds attacked by rodents, an indicator of local vertebrate abundance. - Synthesis. We show that two species of insect seed predators relying on the same host plant species are niche differentiated in their reproductive strategies such that one species has the advantage when fruits are handled promptly by vertebrates and the other when they are not. Defaunation disrupts this mediating influence of vertebrates and strongly favours one species at the expense of the other, providing a case study of the cascading effects of defaunation and its potential to disrupt coexistence of non-target species, including the hyperdiverse phytophagous insects of tropical forests
A new view of electrochemistry at highly oriented pyrolytic graphite
Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
- …