172 research outputs found

    The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions

    Get PDF
    Guieu, C. ... et. al.-- 20 pages, 7 figures, 2 tables, supporting information http://onlinelibrary.wiley.com/doi/10.1002/2014GB004852/suppinfoIn the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (<1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycleThis article was initiated in Istanbul, Turkey during a 2 day workshop financed by the European CoOperation in Science and Technology (COST) Action 735 “Tools for assessing global air-sea fluxes of climate and air pollution relevant gases”. It is a contribution to the The International Surface Ocean - Lower Atmosphere Study (SOLAS) projectPeer reviewe

    Impact of oceanic floods on particulate metal inputs to coastal and deep-sea environments: A case study in the NW Mediterranean Sea

    Get PDF
    An exceptional flood event, accompanying a marine storm, was investigated simultaneously at the entrance and the exit of the Gulf of Lion's hydrosystem (NW Mediterranean) in December 2003. Cs, Cr, Co, Ni, Cu, Zn, Cd and Pb signatures of both riverine and shelf-exported particles indicate that continental inputs and resuspended prodeltaic sediments were intensively mixed with resuspended sediments from middle/outer shelf areas during advective transport. As a result, particles leaving the Gulf of Lion inherited the mean signature of shelf bottom sediments, exporting anthropogenic Pb and Zn out into the open sea. When assessing the particulate metal budget in relation with the event, it appears that the output fluxes accounted for between 15% and 60% of the input fluxes, depending on the element and the period of reference. This trend is also observed for annual budgets, which were drawn up by compiling the data from this study and the literature. Results evidenced that, except some element fluxes during extreme output scenario, outputs never counter-balance the inputs. In its current functioning, the Gulf of Lion's shelf seems to act as a retention/sink zone for particulate metals. Regarding anthropogenic fluxes, the contribution of the oceanic flood of December 2003 to the mean annual scenario is considerable. Environmental impacts onto coastal and deep-sea ecosystems should therefore tightly depend on both the intensity and the frequency of event-dominated sediment transport

    Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production

    Get PDF
    International audienceThe response of the phytoplanktonic community (primary production and algal biomass) to contrasted Sa-haran dust events (wet and dry deposition) was studied in the framework of the DUNE ("a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem") project. We simu-lated realistic dust deposition events (10 g m −2) into large mesocosms (52 m 3). Three distinct dust addition experiments were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition; DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentrations (Chl a) were observed after a dry deposition event, while a wet deposition event resulted in a rapid (24 h after dust addition), strong (up to 2.4-fold) and long (at least a week in duration) increase in PP and Chl a. We show that, in addition to being a source of dis-solved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of nitrate (NO − 3) (net in-creases up to +9.8 ”M NO − 3 at 0.1 m in depth) to the nutrient-depleted surface waters, due to cloud processes and mixing with anthropogenic species such as HNO 3 . The dry deposi-tion event was shown to be a negligible source of NO − 3 . By transiently increasing DIP and NO − 3 concentrations in N–P starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phy-toplanktonic activity. Due to the higher input of NO − 3 relative to DIP, and taking into account the stimulation of the bio-logical activity, a wet deposition event resulted in a strong increase in the NO − 3 /DIP ratio, from initially less than 6, to over 150 at the end of the DUNE-2-R1 experiment, suggest-ing a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP strongly increased after wet dust de-position events, from initially 15 % to 60–70 % 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE ex-periments show that wet and dry dust deposition events in-duce contrasting responses of the phytoplanktonic commu-nity due to differences in the atmospheric supply of bioavail-able new nutrients. Our results from original mesocosm ex-periments demonstrate that atmospheric dust wet deposition Published by Copernicus Publications on behalf of the European Geosciences Union. 4784 C. Ridame et al.: Phytoplanktonic response to Saharan dust events greatly influences primary productivity and algal biomass in LNLC environments through changes in the nutrient stocks, and alters the NO − 3 /DIP ratio, leading to a switch in the nu-trient limitation of the phytoplanktonic activity

    Contribution of electroactive humic substances to the iron-binding ligands released during microbial remineralisation of sinking particles

    Get PDF
    Microscopic plants and animals in seawater require nutrients to survive. One of these key nutrients is iron, dissolved in seawater at very low concentrations. The growth of around half of the microscopic life in the upper ocean is dependent on the availability of this dissolved iron. These organisms form the bottom of the food chain, and their growth is linked to marine productivity and the drawdown of carbon into the deep ocean, in turn influencing climate change. Because iron tends to not dissolve easily in seawater, it must bind with compounds known as ligands, which help keep iron dissolved. However, processes controlling the composition of this ligand pool are poorly understood. As material sinks through the water column, it is broken down by marine microbes, releasing iron and ligands. Here we have studied the release of iron, ligands, and a specific type of ligand known as humic substances, during the microbial degradation of sinking particles. By doing this, we have identified a large fraction of the released ligand pool. This furthers our understanding of the processes controlling dissolved iron concentrations and distributions in ocean waters, providing key information for biogeochemical modeling and for calculating carbon sequestration in seawater

    The role of humic-type ligands in the bioavailability and stabilization of dissolved iron in the Western Tropical South Pacific Ocean

    Get PDF
    The high N2 fixation rate observed in the Lau Basin of the western tropical South Pacific Ocean (WTSP) is fueled by iron (Fe) released from shallow hydrothermal systems. Understanding Fe bioavailability is crucial but the controls on the stability and bioavailability of hydrothermal Fe inputs are still poorly understood. Here, we provide new data on the spatial and vertical distribution of the soluble ubiquitous humic-like ligands (LFeHS) and their associated dissolved Fe (DFe) in the WTSP, including in samples near hydrothermal vents. Our data show that LFeHS are heterogenous ligands with binding sites of both strong and intermediate strengths. These ligands are primarily produced in surface waters and partially mineralized in mesopelagic waters. A substantial fraction of DFe was complexed by LFeHS (mean ~30%). The DFe complexed by LFeHS is likely bioavailable to phytoplankton and LFeHS stabilized Fe released by the mineralization of sinking biomass. However, unsaturation of LFeHS by Fe suggest that part of DFe is not available for complexation with LFeHS. Possible reasons are competition between DFe and other metals, such as dissolved copper, or the inability of LFeHS to access colloidal DFe. The study of two volcanic sites indicates that LFeHS were not produced in these hydrothermal systems. At the active site (DFe ~50 nmol L-1), LFeHS can only partially solubilize the hydrothermal DFe released in this area (1~5.5% of the total DFe). We performed controlled laboratory experiments which show that the observed low solubilization yield result from the inability of LFeHS to solubilize aged Fe oxyhydroxides (FeOx - a kinetically mediated process) and to form stable complexes with Fe(II) species. Our study provides new understanding of the role of LFeHS on the bioavailability and stabilization of hydrothermal DFe

    A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea

    Get PDF
    Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong influence of bulk SSW INPs for the temperatures investigated (T=−18 ∘C for SSAs, T=−15 ∘C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T≄−22 ∘C) INPSSA concentrations are correlated with water-soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,−16C) while cold INPSSA (T<−22 ∘C) are correlated with SSA water-insoluble organic carbon (WIOC) and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INPSSA and SSW nano- and microphytoplankton cell abundances, indicating that these species might be a source of water-insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INPs in marine SSAs, including a single-component model based on POCSSW and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OCSSA content to account for oligotrophy of the Mediterranean Sea. We then compared this formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP emissions into numerical models

    Plankton community structure in response to hydrothermal iron inputs along the Tonga-Kermadec arc

    Get PDF
    The Western Tropical South Pacific (WTSP) basin has been identified as a hotspot of atmospheric dinitrogen fixation due to the high dissolved iron ([DFe]) concentrations (up to 66 nM) in the photic layer linked with the release of shallow hydrothermal fluids along the Tonga-Kermadec arc. Yet, the effect of such hydrothermal fluids in structuring the plankton community remains poorly studied. During the TONGA cruise (November-December 2019), we collected micro- (20-200 Όm) and meso-plankton (&gt;200 Όm) samples in the photic layer (0-200 m) along a west to east zonal transect crossing the Tonga volcanic arc, in particular two volcanoes associated with shallow hydrothermal vents (&lt; 500 m) in the Lau Basin, and both sides of the arc represented by Melanesian waters and the South Pacific Gyre. Samples were analyzed by quantitative imaging (FlowCam and ZooScan) and then coupled with acoustic observations, allowing us to study the potential transfer of phytoplankton blooms to higher planktonic trophic levels. We show that micro- and meso-plankton exhibit high abundances and biomasses in the Lau Basin and, to some extent, in Melanesian waters, suggesting that shallow hydrothermal inputs sustain the planktonic food web, creating productive waters in this otherwise oligotrophic region. In terms of planktonic community structure, we identified major changes with high [DFe] inputs, promoting the development of a low diversity planktonic community dominated by diazotrophic cyanobacteria. Furthermore, in order to quantify the effect of the shallow hydrothermal vents on chlorophyll a concentrations, we used Lagrangian dispersal models. We show that chlorophyll a concentrations were significantly higher inside the Lagrangian plume, which came into contact with the two hydrothermal sites, confirming the profound impact of shallow hydrothermal vents on plankton production

    Iron-binding by dissolved organic matter in the Western Tropical South Pacific Ocean (GEOTRACES TONGA cruise GPpr14)

    Get PDF
    Iron (Fe) is an essential micronutrient for phytoplankton growth, but its scarcity in seawater limits primary productivity across much of the ocean. Most dissolved Fe (DFe) in seawater is complexed with Fe-binding organic ligands, a poorly constrained fraction of dissolved organic matter (DOM), which increase Fe residence time and impact Fe bioavailability. Here, we present the conditional concentration (LFe) and binding-strength (log KFe'Lcond) of Fe-binding ligands in the Western Tropical South Pacific (WTSP) Ocean during the GEOTRACES TONGA cruise (GPpr14). The transect crossed the Lau basin, a region subject to shallow hydrothermal Fe inputs that fuel intense diazotrophic activity, the oligotrophic South Pacific gyre, and the Melanesian basin. Organic speciation was analyzed by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV) using salicylaldoxime at 25 ”M. We found a high mean LFe of 5.2 ± 1.2 nMeqFe (n = 103) across the entire transect, predominantly consisting of intermediate strength L2 ligands (84%; mean log KFe'Lcond of 11.6 ± 0.4), consistent with humic-like substances. DFe correlated with the humic-like component of the fluorescent DOM (HS-like FDOM), yet the electroactive Fe-binding humic-like substances (LFeHS) accounted for only 20 ± 13% of LFe in the mixed layer and 8 ± 6% in deep waters. Ligands were in large excess compared to DFe (mean excess ligand eLFe = 4.6 ± 1.1 nMeqFe), suggesting poor stabilization of DFe inputs. High LFe (up to 9 nMeqFe) in samples close to hydrothermal sites could be due to detoxification strategies from plankton communities toward hydrothermally-fueled toxic trace metals other than Fe, with an apparent dilution of the DOM from the Lau basin into neighboring regions. We also observed a different peak potential of the Fe salicylaldoxime complex detected by CLE-AdCSV between the Lau and Melanesian basins, and between surface and deep waters. To our knowledge, this change in potential has not previously been reported; whether this represents a novel detection of specificities in DOM composition merits further investigation. Competition between Fe and competing metals for ligand binding sites could favor DFe oxidation and precipitation near hydrothermal vents and explain the absence of strong Fe stabilization in the WTSP

    Biogeochemical iron budgets of the Southern Ocean south of Australia : decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4034, doi:10.1029/2009GB003500.Climate change is projected to significantly alter the delivery (stratification, boundary currents, aridification of landmasses, glacial melt) of iron to the Southern Ocean. We report the most comprehensive suite of biogeochemical iron budgets to date for three contrasting sites in subantarctic and polar frontal waters south of Australia. Distinct regional environments were responsible for differences in the mode and strength of iron supply mechanisms, with higher iron stocks and fluxes observed in surface northern subantarctic waters, where atmospheric iron fluxes were greater. Subsurface waters southeast of Tasmania were also enriched with particulate iron, manganese and aluminum, indicative of a strong advective source from shelf sediments. Subantarctic phytoplankton blooms are thus driven by both seasonal iron supply from southward advection of subtropical waters and by wind-blown dust deposition, resulting in a strong decoupling of iron and nutrient cycles. We discuss the broader global significance our iron budgets for other ocean regions sensitive to climate-driven changes in iron supply.T.W. was supported by a BDI grant from CNRS and RĂ©gion PACA, by CNRS PICS project 3604, and by the “Soutien Ă  la mer” CSOA CNRS-INSU. P.W.B. was supported by the New Zealand FRST Coasts and Oceans OBI. This research was supported by the Australian Government Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems CRC (ACE CRC) and Australian Antarctic Science project 2720
    • 

    corecore