124 research outputs found

    Building student relationships across religion and worldview difference

    Get PDF
    Survey research with over 8,000 students in 2021 and 2022, together with case study research at four very different universities, investigated students’ views about, and experiences of, worldview diversity on university campuses. It revealed what universities are doing to facilitate relationshipbuilding and makes recommendations to improve universities’ work in this area

    Using observational data to emulate a randomized trial of dynamic treatment switching strategies

    Get PDF
    BACKGROUND: When a clinical treatment fails or shows suboptimal results, the question of when to switch to another treatment arises. Treatment switching strategies are often dynamic because the time of switching depends on the evolution of an individual's time-varying covariates. Dynamic strategies can be directly compared in randomized trials. For example, HIV-infected individuals receiving antiretroviral therapy could be randomized to switching therapy within 90 days of HIV-1 RNA crossing above a threshold of either 400 copies/ml (tight-control strategy) or 1000 copies/ml (loose-control strategy).METHODS: We review an approach to emulate a randomized trial of dynamic switching strategies using observational data from the Antiretroviral Therapy Cohort Collaboration, the Centers for AIDS Research Network of Integrated Clinical Systems and the HIV-CAUSAL Collaboration. We estimated the comparative effect of tight-control vs. loose-control strategies on death and AIDS or death via inverse-probability weighting.RESULTS: Of 43 803 individuals who initiated an eligible antiretroviral therapy regimen in 2002 or later, 2001 met the baseline inclusion criteria for the mortality analysis and 1641 for the AIDS or death analysis. There were 21 deaths and 33 AIDS or death events in the tight-control group, and 28 deaths and 41 AIDS or death events in the loose-control group. Compared with tight control, the adjusted hazard ratios (95% confidence interval) for loose control were 1.10 (0.73, 1.66) for death, and 1.04 (0.86, 1.27) for AIDS or death.CONCLUSIONS: Although our effective sample sizes were small and our estimates imprecise, the described methodological approach can serve as an example for future analyses

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366–959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z 1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator

    Effects of ocean sprawl on ecological connectivity: impacts and solutions

    Get PDF
    The growing number of artificial structures in estuarine, coastal and marine environments is causing “ocean sprawl”. Artificial structures do not only modify marine and coastal ecosystems at the sites of their placement, but may also produce larger-scale impacts through their alteration of ecological connectivity - the movement of organisms, materials and energy between habitat units within seascapes. Despite the growing awareness of the capacity of ocean sprawl to influence ecological connectivity, we lack a comprehensive understanding of how artificial structures modify ecological connectivity in near- and off-shore environments, and when and where their effects on connectivity are greatest. We review the mechanisms by which ocean sprawl may modify ecological connectivity, including trophic connectivity associated with the flow of nutrients and resources. We also review demonstrated, inferred and likely ecological impacts of such changes to connectivity, at scales from genes to ecosystems, and potential strategies of management for mitigating these effects. Ocean sprawl may alter connectivity by: (1) creating barriers to the movement of some organisms and resources - by adding physical barriers or by modifying and fragmenting habitats; (2) introducing new structural material that acts as a conduit for the movement of other organisms or resources across the landscape; and (3) altering trophic connectivity. Changes to connectivity may, in turn, influence the genetic structure and size of populations, the distribution of species, and community structure and ecological functioning. Two main approaches to the assessment of ecological connectivity have been taken: (1) measurement of structural connectivity - the configuration of the landscape and habitat patches and their dynamics; and (2) measurement of functional connectivity - the response of organisms or particles to the landscape. Our review reveals the paucity of studies directly addressing the effects of artificial structures on ecological connectivity in the marine environment, particularly at large spatial and temporal scales. With the ongoing development of estuarine and marine environments, there is a pressing need for additional studies that quantify the effects of ocean sprawl on ecological connectivity. Understanding the mechanisms by which structures modify connectivity is essential if marine spatial planning and eco-engineering are to be effectively utilised to minimise impacts

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    Membrane protein extraction and purification using partially-esterified SMA polymers

    Get PDF
    Styrene maleic acid (SMA) polymers have proven to be very successful for the extraction of membrane proteins, forming SMA lipid particles (SMALPs), which maintain a lipid bilayer around the membrane protein. SMALP-encapsulated membrane proteins can be used for functional and structural studies. The SMALP approach allows retention of important protein-annular lipid interactions, exerts lateral pressure, and offers greater stability than traditional detergent solubilisation. However, SMA polymer does have some limitations, including a sensitivity to divalent cations and low pH, an absorbance spectrum that overlaps with many proteins, and possible restrictions on protein conformational change. Various modified polymers have been developed to try to overcome these challenges, but no clear solution has been found. A series of partially-esterified variants of SMA (SMA 2625, SMA 1440 and SMA 17352) has previously been shown to be highly effective for solubilisation of plant and cyanobacterial thylakoid membranes. It was hypothesised that the partial esterification of maleic acid groups would increase tolerance to divalent cations. Therefore, these partially-esterified polymers were tested for the solubilisation of lipids and membrane proteins, and their tolerance to magnesium ions. It was found that all partially esterified polymers were capable of solubilising and purifying a range of membrane proteins, but the yield of protein was lower with SMA 1440, and the degree of purity was lower for both SMA1440 and SMA17352. SMA2625 performed comparably to SMA 2000. SMA 1440 also showed an increased sensitivity to divalent cations. Thus, it appears the interactions between SMA and divalent cations are more complex than proposed and require further investigation

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
    corecore