1,081 research outputs found
Sensing electric fields using single diamond spins
The ability to sensitively detect charges under ambient conditions would be a
fascinating new tool benefitting a wide range of researchers across
disciplines. However, most current techniques are limited to low-temperature
methods like single-electron transistors (SET), single-electron electrostatic
force microscopy and scanning tunnelling microscopy. Here we open up a new
quantum metrology technique demonstrating precision electric field measurement
using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC
electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This
corresponds to the electric field produced by a single elementary charge
located at a distance of ~ 150 nm from our spin sensor with averaging for one
second. By careful analysis of the electronic structure of the defect centre,
we show how an applied magnetic field influences the electric field sensing
properties. By this we demonstrate that diamond defect centre spins can be
switched between electric and magnetic field sensing modes and identify
suitable parameter ranges for both detector schemes. By combining magnetic and
electric field sensitivity, nanoscale detection and ambient operation our study
opens up new frontiers in imaging and sensing applications ranging from
material science to bioimaging
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
Carbon sequestration in the deep Atlantic enhanced by Saharan dust
Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles
Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks
Working memory (WM) deficits are a neuropsychological core finding in patients with schizophrenia and also supposed to be a potential endophenotype of schizophrenia. Yet, there is a large heterogeneity between different WM tasks which is partly due to the lack of process specificity of the tasks applied. Therefore, we investigated WM functioning in patients with schizophrenia using process- and circuit-specific tasks. Thirty-one patients with schizophrenia and 47 controls were tested with respect to different aspects of verbal and visuospatial working memory using modified Sternberg paradigms in a computer-based behavioural experiment. Total group analysis revealed significant impairment of patients with schizophrenia in each of the tested WM components. Furthermore, we were able to identify subgroups of patients showing different patterns of selective deficits. Patients with schizophrenia exhibit specific and, in part, selective WM deficits with indirect but conclusive evidence of dysfunctions of the underlying neural networks. These deficits are present in tasks requiring only maintenance of verbal or visuospatial information. In contrast to a seemingly global working memory deficit, individual analysis revealed differential patterns of working memory impairments in patients with schizophrenia
A systematic experimental neuropsychological investigation of the functional integrity of working memory circuits in major depression
Verbal and visuospatial working memory (WM) impairment is a well-documented finding in psychiatric patients suffering from major psychoses such as schizophrenia or bipolar affective disorder. However, in major depression (MDD) the literature on the presence and the extent of WM deficits is inconsistent. The use of a multitude of different WM tasks most of which lack process-specificity may have contributed to these inconsistencies. Eighteen MDD patients and 18 healthy controls matched with regard to age, gender and education were tested using process- and circuit-specific WM tasks for which clear brain-behaviour relationships had been established in prior functional neuroimaging studies. Patients suffering from acute MDD showed a selective impairment in articulatory rehearsal of verbal information in working memory. By contrast, visuospatial WM was unimpaired in this sample. There were no significant correlations between symptom severity and WM performance. These data indicate a dysfunction of a specific verbal WM system in acutely ill patients with MDD. As the observed functional deficit did not correlate with different symptom scores, further, longitudinal studies are required to clarify whether and how this deficit is related to illness acuity and clinical state of MDD patients
Platelet-Rich Plasma Promotes the Proliferation of Human Muscle Derived Progenitor Cells and Maintains Their Stemness
Human muscle-derived progenitor cells (hMDPCs) offer great promise for muscle cell-based regenerative medicine; however, prolonged ex-vivo expansion using animal sera is necessary to acquire sufficient cells for transplantation. Due to the risks associated with the use of animal sera, the development of a strategy for the ex vivo expansion of hMDPCs is required. The purpose of this study was to investigate the efficacy of using platelet-rich plasma (PRP) for the ex-vivo expansion of hMDPCs. Pre-plated MDPCs, myoendothelial cells, and pericytes are three populations of hMDPCs that we isolated by the modified pre-plate technique and Fluorescence Activated Cell Sorting (FACS), respectively. Pooled allogeneic human PRP was obtained from a local blood bank, and the effect that thrombin-activated PRP-releasate supplemented media had on the ex-vivo expansion of the hMDPCs was tested against FBS supplemented media, both in vitro and in vivo. PRP significantly enhanced short and long-term cell proliferation, with or without FBS supplementation. Antibody-neutralization of PDGF significantly blocked the mitogenic/proliferative effects that PRP had on the hMDPCs. A more stable and sustained expression of markers associated with stemness, and a decreased expression of lineage specific markers was observed in the PRP-expanded cells when compared with the FBS-expanded cells. The in vitro osteogenic, chondrogenic, and myogenic differentiation capacities of the hMDPCs were not altered when expanded in media supplemented with PRP. All populations of hMDPCs that were expanded in PRP supplemented media retained their ability to regenerate myofibers in vivo. Our data demonstrated that PRP promoted the proliferation and maintained the multi-differentiation capacities of the hMDPCs during ex-vivo expansion by maintaining the cells in an undifferentiated state. Moreover, PDGF appears to be a key contributing factor to the beneficial effect that PRP has on the proliferation of hMDPCs. © 2013 Li et al
The impact of thought speed and variability on psychological state and threat perception: Further exploration of the theory of mental motion.
Thought speed and variability are purportedly common features of specific psychological states, such as mania and anxiety. The present study explored the independent and combinational influence of these variables upon condition-specific symptoms and affective state, as proposed by Pronin and Jacobs’ (2008) theory of mental motion. A general population sample was recruited online (N = 263). Participants completed a thought speed and variability manipulation task, inducing a combination of fast/slow and varied/repetitive thought. Change in mania and anxiety symptoms was assessed through direct self-reported symptom levels and indirect, processing bias assessment (threat interpretation). Results indicated that fast and varied thought independently increased self-reported mania symptoms. Affect was significantly less positive and more negative during slow thought. No change in anxiety symptoms or threat interpretation was found between manipulation conditions. No evidence for the proposed combinational influence of speed and variability was found. Implications and avenues for therapeutic intervention are discussed
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Recommended from our members
Are researchers deliberately bypassing the technology transfer office? An analysis of TTO awareness
Most universities committed to the commercialization of academic research have established technology transfer offices (TTOs). Nonetheless, many researchers bypass these TTOs and take their inventions directly to the marketplace. While TTO bypassing has typically been portrayed as deliberate and undesirable behavior, we argue that it could be unintentional as many researchers may simply be unaware of the TTO’s existence. Taking an information-processing perspective and using data on 3250 researchers in 24 European universities, we examine researcher attributes associated with TTO awareness. Our evidence confirms that only a minority of researchers are aware of the existence of a TTO at their university. TTO awareness is greater among researchers who possess experience as entrepreneurs, closed many research and consulting contracts with industry partners, conduct research in medicine, engineering or life sciences, or occupy postdoctoral positions. Policy implications of these findings are discussed
- …
