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Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface 11 

ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can 12 

enhance primary productivity, and mineral particles act as ballast, increasing sinking 13 

rates of particulate organic matter. Here we present a unique 2-year time-series of 14 

sediment-trap observations of particulate organic carbon flux to 3000 m depth, measured 15 

directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor 16 

South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion 17 

of primary production is exported to depth in the dust-rich North Atlantic gyre.  Low 18 

stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of 19 

nitrogen fixation and productivity following the deposition of dust-borne nutrients. 20 

Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing 21 

Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, 22 

dust-derived mineral particles constitute the dominant ballast element during the 23 

enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases 24 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/78863695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


carbon sequestration in the North Atlantic gyre through the fertilisation of the nitrogen-25 

fixing community in surface waters and mineral ballasting of sinking particles. 26 

Flux of airborne desert dust into the surface ocean can increase the amount of 27 

photosynthetically fixed carbon dioxide (CO2) by reducing nutrient limitation of primary 28 

production and thus increase the flux of particulate organic carbon (POC) to the deep ocean1.  29 

Dense dust-derived lithogenic particles can also increase particle size through aggregation and 30 

enhance sinking velocity and preservation of POC through ballasting, allowing more carbon to 31 

penetrate deeper into the ocean’s interior2. The impact of dust input on downward POC flux 32 

can be especially important in the subtropical low-nutrient low-chlorophyll (oligotrophic) 33 

gyres which occupy 60% of the global ocean surface3 and thus are likely large sinks for 34 

atmospheric CO2. Even relatively small changes in downward POC flux in these immense areas 35 

would significantly affect the global carbon budget. However, the transport of organic carbon 36 

(i.e. Biological Carbon Pump) in oligotrophic regions is very poorly understood, and large 37 

uncertainties remain over the impact of enhanced dust deposition on the magnitude of POC 38 

flux below the depth of winter mixing (sequestration).   39 

We tested the hypothesis that enhanced dust deposition increases POC sequestration in 40 

remote low-nutrient low-chlorophyll provinces by directly measuring downward deep POC 41 

flux in the centres of the subtropical North and South Atlantic gyres. The study regions 42 

represent permanently stratified systems characterised by restricted nutrient advection, and 43 

hence extremely low surface concentrations of macronutrients (nitrate and phosphate) and 44 

chlorophyll. Here, picoplankton dominate community structure4, while heterotrophic bacteria 45 

and cyanobacteria govern ecosystem metabolism, channelling a large proportion of POC into 46 

the microbial loop5, thus diminishing its export out of the euphotic zone. The subtropical North 47 

Atlantic, however, receives large depositional fluxes of Saharan dust with associated essential 48 

nutrients (e.g. nitrogen, phosphorus, iron)1 blocked from the South Atlantic region by the Inter-49 



Tropical Convergence Zone6. The Fe-rich surface waters of the northern gyre are favoured by 50 

N2 fixing microbes (diazotrophs) that generate bioavailable nitrogen for other phytoplankton7, 51 

thereby allowing for a higher proportion of primary production to be converted into sinking 52 

POC than would otherwise occur.  Phosphate co-limits the Fe-induced N2 fixation and 53 

production fuelled by atmospheric nitrogen8, 9. This can exert an important control over the  54 

amount of POC ultimately produced from diazotrophic and atmospheric sources and 55 

subsequently available for export. Along with this fertilisation effect, increased lithogenic 56 

particle concentration following dust input can also facilitate POC flux to depth through 57 

additional incorporation of dense dust particles10. Biomineral ballasting is otherwise regulated 58 

by calcite which is typically found in both gyres11. However, the degree to which lithogenic 59 

ballasting can drive the increased POC sedimentation would itself be limited by the amount of 60 

POC present12.   61 

Field observations in the central Atlantic gyres  62 

We directly captured POC flux in the central Atlantic gyres from 2007 to 2010 using 63 

sediment traps moored at 3000 m depth at sites NOG (23°N 41°W) and SOG (18°S 25°W) 64 

(Fig.1).  During this period, NOG was subjected to, on average, ten-fold higher dust deposition 65 

compared to SOG (Fig. 2a), as inferred from dust concentration measurements over Barbados13 66 

for NOG and modelled data14, 15 for SOG (Methods). At both sites, the average surface 67 

production rates derived from a Vertically Generalised Production Model (VGPM)16 were 68 

lower than much of the global ocean17, and on average 23% higher at NOG than at SOG (Fig. 69 

2b).  The observed POC fluxes to the trap at NOG (0.40-2.7 mg C m-2 d-1; mean =1.06 mg C m-70 

2 d-1) were always at least two-fold higher than at SOG (0.21-0.95 mg C m-2 d-1; mean = 0.49 71 

mg C m-2 d-1) (Fig. 2d, 3). The POC fluxes at NOG and SOG were significantly lower than the 72 

depth-normalised values reported for the oligotrophic sites in the western North Atlantic gyre 73 

(station OFP (BATS))18 and subtropical North Pacific gyre (station ALOHA)19, and hence they 74 



are the lowest measured in the global ocean. From the ratios of POC flux to VGPM primary 75 

production (both variables were averaged over the trap deployment period) we calculate almost 76 

double the fraction of surface production reaching 3000 m depth at NOG (0.60%) compared to 77 

SOG (0.37%). These very low values are similar to the records at BATS (0.59%)18 and imply 78 

an overall more efficient downward POC transport in the dusty northern gyre. Lithogenic flux 79 

determined from aluminium concentrations in trap material was significantly lower at SOG 80 

than at NOG (Fig. 2c) and elsewhere in the subtropical North Atlantic18, 20, indicating that the 81 

inter-basin differences in dust deposition propagated to depth. The NOG data bridge the 82 

previous observations of deep lithogenic flux in the eastern and western parts of the northern 83 

gyre18, 20 showing the westward gradient of decreasing deep lithogenic fluxes driven by the 84 

weakening of the Saharan dust transport towards the northwest-Atlantic13.     85 

Although higher at NOG, at both sites, POC flux was enhanced during late summer-86 

autumn (>120% of the annual mean value; Fig. 3), a period of warm sea-surface temperature 87 

(25.0 - 28.2 °C), relatively shallow mixed layer (<50 m), and low surface chlorophyll 88 

concentrations (<0.04 mg m-3; Supplementary Fig. 1). At NOG, the average dust input during 89 

summer-autumn (14.4±8.9 mg m-2 d-1) exceeded the wintertime values (8.87±11.6 mg m-2 d-1) 90 

(Fig. 3a). An enhanced input of dust-borne nitrogen, phosphorus and iron has likely occurred 91 

during this period. After nitrogen is exhausted by the dust-stimulated primary producers, the 92 

warm and strongly stratified water column would offer optimal conditions for enhanced N2 93 

fixation provided there is enough iron and phosphate present to satisfy cellular demands of 94 

diazotrophs7, 8, 9. Bloom-forming Trichodesmium spp. dominate diazotrophic biomass in the 95 

region of NOG21.  Elevated N2 fixation rates by these diazotrophs were reported during 96 

summer-autumn (median 34.9 µmol N m-2 d-1) compared to winter-spring (median 12.2 µmol 97 

N m-2 d-1) (refs21, 22, 23, 24, 25). This coincides with higher fluxes of aerosol iron in autumn than 98 

in spring26 and higher surface concentrations of dissolved iron in the early autumn27 (1.0-1.3 99 



nmol L-1) than in winter28 (0.18-0.54 nmol L-1). Lower phosphate concentrations measured in 100 

the central northern gyre during summer have also been attributed to the enhanced diazotrophic 101 

activity exhausting the phosphate pool8. Remarkably, we find a strikingly high POC flux of up 102 

to 2.7 mg C m-2 d-1 in August-September 2009 at NOG (Fig. 3a). This relatively short POC 103 

export pulse, never seen at SOG, accounted for 29% of total POC sequestered at NOG during 104 

2007-2009 and greatly exceeded the mean wintertime POC flux at NOG (0.88±0.13 mg C m-2 105 

d-1) and the daily flux at SOG. A notable presence of some intact Trichodesmium “tufts” (Figs. 106 

3a, 4) within this pulse suggests a potential involvement of these diazotrophs in driving the 107 

extreme POC sequestration event at NOG. Similarly short and efficient POC export pulses to 108 

> 2800 m depth have been regularly observed at ALOHA following a summertime increase in 109 

productivity and biomass of diatom-diazotroph symbiotic phytoplankton19.   110 

Fertilisation effect of dust  111 

We measured markedly low stable nitrogen isotope ratios in the trap material (δ15NPN, 112 

in ‰ relative to air) from the dust-rich NOG (range 0.40-1.32‰; mass-weighed mean 0.77‰), 113 

indicating that isotopically light nitrogen introduced by enhanced N2 fixation and potentially 114 

atmospheric deposition29 significantly contributed to sinking particles. Some of this low δ15N 115 

signal might have originated south of NOG (10º-16ºN), before being transported to and 116 

accumulated at the NOG thermocline as low δ15Nnitrate during northward water mass transit7, 30. 117 

However, a strong inverse correlation between δ15NPN and POC flux (R2=0.67, p=0.001) with 118 

Trichodesmium “tufts” present at the lowest δ15NPN values (Figs. 4, 5), is suggestive of a direct 119 

link between elevated POC flux at NOG and a local supply of newly fixed nitrogen by 120 

diazotrophs whose activity was likely stimulated by substantial inputs of dust-borne iron and 121 

phosphorus. Observations at NOG are qualitatively similar to those at ALOHA19, where δ15NPN 122 

minima and diazotroph-driven particulate POC flux maxima are closely associated. Dust 123 



deposition, which is a substantial source of isotopically light nitrogen in the region (8.5 µmol 124 

m-2 d-1; ref31) could augment the deep POC flux lowering its δ15N signature.  125 

In contrast to NOG, sinking particles from the dust-poor SOG carried significantly 126 

heavier δ15NPN of 3.70‰ to 4.41‰ (mass-weighted mean 4.07‰). This is similar to the oceanic 127 

average δ15N of deep-water nitrate (4.8‰; ref29), and hence this source was probably fuelling 128 

primary production at SOG.  129 

The deep δ15NPN at NOG and SOG fit a broad range of δ 15N values reported for 130 

particulate nitrogen in the upper waters of the central North and South Atlantic gyres32, 33 131 

(Supplementary Fig. 2).  At both sites, trap material was 15N-enriched compared to the particles 132 

suspended in the euphotic zone (top 130 m) likely due to fractionation resulting from 133 

remineralisation processes in both the surface and mesopelagic (Ref 34). Similar δ 15N values 134 

for trap material and particles from 150-160 m depth may also point to a potentially important 135 

contribution of heavier δ15N signal formed at the deep chlorophyll maximum to δ15NPN.   136 

We estimated the contribution of different nitrogen sources to δ15NPN at NOG and SOG 137 

using a two-end member nitrogen mass-balance model29 (see Methods and references therein). 138 

We assumed that the isotope budget of the mixed layer in the permanently oligotrophic gyres 139 

incorporates nitrogen supplied by diazotrophs, by vertical diffusion across the nitrate 140 

concentration gradient, and from dust (NOG only). We also assumed negligible isotopic 141 

fractionation following complete nitrogen assimilation by phytoplankton. The average isotopic 142 

signature of diazotrophic biomass (-1±1‰) was used as the N2 fixation endmember. The upper 143 

thermocline nitrate endmember was represented by δ15N-nitrate averaged over the depth of the 144 

nitrate gradient spanning the euphotic layer at NOG (2.73±0.36‰) and SOG (6.22±0.35‰). 145 

The dust-derived nitrogen endmember was assigned δ15N of -3.1‰ based on the average 146 

isotopic composition of bulk aerosols influenced by Saharan dust. Using these endmember 147 

values, we find that local N2 fixation could contribute on average 50.4±8.4% to the isotopic 148 



signal of nitrogen sequestration at NOG, while aerosol nitrogen alone (if all bioavailable) could 149 

account for 32.4±5.4% (Supplementary Table 1). The relative contribution of diazotrophs to 150 

δ15NPN at NOG was higher than that at BATS (33%; at average δ15NPN =+1‰ (ref34) and nitrate 151 

δ15N=+2.6‰ (ref35)) and at ALOHA (range 21-48%; refs19, 36), where eddy transfer and lateral 152 

advection are important mechanisms of nitrogen supply36, 37. At SOG, newly fixed nitrogen 153 

contributed a smaller, yet considerable portion of δ15NPN (29.7±3.1%), possibly owing to the 154 

activity of unicellular cyanobacteria, major N2 fixers in the South Atlantic7, 21. We, however, 155 

acknowledge a significant uncertainty of these results due to an overall lack of time-resolved 156 

δ15N data for the surface nitrate and dust at the trap sites. Moreover, our budgets did not account 157 

for a possible origin of particles from a specific trophic level (e.g. faecal pellets) and alteration 158 

of δ15NPN due to isotopic fractionation during particle remineralisation and transformation in 159 

the mesopelagic. However, regardless of these uncertainties, the isotope budgets suggest a large 160 

systematic difference in the contribution of newly fixed local nitrogen inputs between the North 161 

and South Atlantic gyres which likely contriutes to the two-fold inter-basin difference in POC 162 

sequestration. Our observations thus set an important quantitative constraint on the downward 163 

flux of low δ15N material sinking to the subtropical North Atlantic. They provide compelling 164 

evidence for the origin of an isotopically light nitrate reservoir in the subtropical North Atlantic 165 

supporting previous observations (e.g. ref30).    166 

The unique presence of intact Trichodesmium colonies in the deep particles at NOG 167 

(Fig. 4) indicates that Trichodesmium biomass is not always lost in the surface waters as 168 

previously assumed38, 39, but can leave the euphotic zone and contribute to POC export. It is 169 

possible that the “tufts” reached the abyssal depth at NOG in a rapidly sinking (>200 m d-1) 170 

Trichodesmium bloom, collapsed through viral lysis or programmed cell death39. Since Fe 171 

starvation at NOG is unlikely, exhaustion of bioavailable phosphrous8 during the summer 172 

might be major triggers of the bloom collapse. Alternatively, the “tufts” might represent 173 



Trichodesmium populations that migrated towards the phosphocline to “mine” phosphate but 174 

were unable to return to the light40. Finally, Trichodesmium can retain dust particles within 175 

their morphologically intricate colonies to accelerate Fe dissolution from dust41. Trapped dust 176 

particles may therefore “ballast” Trichodesmium colonies, increasing their density and 177 

allowing them to sink rapidly to depth and avoid remineralisation or grazing. This could partly 178 

explain the temporal coherence between low δ15N, elevated dust, POC, and lithogenic fluxes 179 

during late summer at NOG (Fig. 3a).  180 

Ballasting effect of dust 181 

Higher dust input significantly altered the composition of particles at NOG compared 182 

to SOG (Fig. 2e). Dust-derived lithogenic material was the second largest contributor 183 

(34.3±11.6%) to the total mass at NOG after calcite, whereas at SOG this value was 4.7±2.3%, 184 

consistent with the difference in the amount of dust being deposited at each site (Fig. 2a).  185 

Although the seasonal signal of elevated dust flux at both sites was largely lost at 3000 m depth, 186 

we still observed elevated lithogenic flux at NOG (>120% of the annual average) in winter 187 

2008 and summer-autumn 2008 and 2009 concurrently with the increased POC flux and 188 

following high dust input (Fig. 3a). Assuming that this temporal coherence was not accidental, 189 

we investigated the relative involvement of lithogenic and biogenic (opal + calcite) ballast 190 

phases in enhanced POC sequestration. Based on the outputs of the mineral-associated POC 191 

flux model and multiple linear regression analysis2, 42 (Methods), 41.0% of POC flux at SOG 192 

was ballasted by lithogenic material. This, however, might be an overestimation driven by a 193 

relatively large carrying coefficient for lithogenic ballast (0.371) which resulted from a nearly 194 

1:1 ratio of POC to lithogenic flux and their strong positive correlation (Spearman’s p=0.91). 195 

At NOG the percentage of POC ballasted by lithogenic particles increased from 45.7% during 196 

low POC flux to 70.1% during high flux in the summer-autumn (Supplementary Table 2). 197 

Overall, lithogenic material appears to be a more important ballast for POC in the central 198 



northern gyre compared to its western boundary (25%), where lithogenic fluxes are lower and 199 

opal fluxes are ten times higher18.  We suggest that at NOG elevated dust inputs may shift the 200 

dominant ballasting phase from biogenic to lithogenic, increasing POC flux to the deep ocean. 201 

This is likely achieved through a sudden increase in mineral particle concentration following 202 

dust deposition and subsequent stimulation of aggregation of organic matter, including that of 203 

diazotrophs, in the surface waters10. Moreover, clay particles, constituting >60% of the aerosol 204 

dust over the central North Atlantic43, are denser (2.79 g cm-3) than biomineral calcite (2.65 g 205 

cm-3) and opal (2.1 g cm-3), and thus would likely increase sinking velocity of POC upon 206 

aggregation.  Although currently debated in the literature (e.g. refs.44, 45), lithogenic ballast 207 

might have also exert an enhanced protective effect on POC compared to calcite. Recent 208 

laboratory experiments45, 46 demonstrated slower degradation rates for clay-ballasted POC 209 

relative to calcite-ballasted POC. The existence of such protective effect of lithogenic material 210 

is yet to be shown in the field.   211 

Mechanism of dust-induced enhancement of carbon sequestration  212 

Lithogenic particles did not represent the main ballasting phase for POC during periods 213 

of high and low lithogenic fluxes and were not associated with the biomineral fluxes at NOG 214 

(Supplementary Table 2). The ballasting ability of lithogenic particles at NOG appears to be 215 

confined to the summer-autumn period (Fig. 3a) when the surface fertilisation by dust was 216 

potentially the strongest. This tight temporal coupling suggests that the presence of additional 217 

fresh organic (i.e. fertilisation effect) matter might be required to activate effective lithogenic 218 

ballasting while lithogenic particles are critical to transport the fertilisation effect to the deep 219 

ocean. The variability in mineralogy and morphology of dust arriving at NOG from different 220 

locations in the Sahara during winter47 and summer may have also impacted both fertilisation 221 

and ballasting properties of dust.  222 



Overall, enhanced POC sequestration in the dust-rich NOG suggests that in the vast 223 

nutrient-limited Atlantic, the strength of the biological carbon pump could be significantly 224 

lower without concurrent dust-induced fertilisation and ballasting.  The observed two-fold 225 

enhancement of POC sequestration under a ten-fold higher dust (iron) input at NOG further 226 

points to a potentially important role of phosphate in setting the upper bound for the Fe-driven 227 

enhancement of POC export. However, fertilisation could also stimulate the activity of 228 

heterotrophic bacteria, increasing remineralisation and a corresponding reduction of carbon 229 

export5.    230 

Under the current climatic trends, the subtropical oligotrophic gyres are predicted to 231 

expand over the coming centuries48. Multi-decadal observations of dust concentrations over 232 

Barbados have already revealed a weakening of dust transport from North Africa to the North 233 

Atlantic as a function of increasing sea-surface temperature13. Predicted changes in wind 234 

patterns are expected to continue altering dust deposition into the ocean and hence input of 235 

nutrients and mineral ballast49. In parallel, ongoing ocean acidification might affect 236 

bioavailability of essential nutrients, including iron50. All these perturbations will certainly 237 

alter POC sequestration in the oligotrophic gyres, and hence global climate, in the coming 238 

centuries. Therefore, our study urges for a better understanding of the present Biological 239 

Carbon Pump functioning in the nutrient-limited oceans.  240 

 241 
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Figure captions 460 

Figure 1| Chlorophyll and dust deposition flux in the Atlantic Ocean. a, annual composite 461 

Moderate-resolution Imaging Spectroradiometer chlorophyll-a concentration (mg m-3) in 2009. 462 

Oligotrophic gyres are represented by dark blue areas of low chlorophyll concentrations (<0.1 463 

mg m-3). b, basin-wide annually averaged (1974-2004) modelled dust deposition flux re-plotted 464 

from ref14. Yellow triangles indicate the locations of the NOG and SOG sediment trap 465 

moorings, which are also on the annually repeated Atlantic Meridional Transect (AMT) line 466 

(www.amt-uk.org). The black solid line shows the AMT-19 cruise track (Oct-Nov 2009) 467 

passing through the NOG and SOG sites. Dashed lines indicate an approximate north-south 468 

boundary of the Inter-Tropical Convergence Zone.  469 

Figure 2| Surface ocean and deep particle flux data for the study sites. a-d, mean ± standard 470 

deviation values over the respective trap deployment periods. a, dust deposition flux (n=25 for 471 

NOG and n=26 for SOG). b, depth-integrated primary production derived from the 472 

chlorophyll-based Vertically Generalised Production Model16 (Methods) c, lithogenic flux 473 

(n=40 for both sites). d, POC flux (n=40 for both sites). e, composition of sediment trap 474 

material. The height of the stacked bars represents total particle mass flux. 475 

Figure 3| Time-series fluxes at NOG (a) and SOG (b). The dust deposition (monthly values) 476 

and aluminium-derived lithogenic fluxes are presented on a logarithmic scale. The uncertainty 477 

of the dust flux to the South Atlantic is estimated to be at least a factor of 10 (ref14). For POC 478 

and lithogenic fluxes, the width of each bar corresponds to 14- or 21-day collection interval. 479 

Red circles depict stable nitrogen isotopic composition of particles (δ15NPN) from the selected 480 

cups. Arrows and a letter “T” indicate the cups where Trichodesmium spp. “tufts” were found. 481 

Summer-autumn periods are highlighted in yellow.  482 

 483 

http://www.amt-uk.org/


Figure 4| Trichodesmium spp. “tufts” from the summer POC flux pulse at NOG. Tufted 484 

colonies of Trichodesmium spp. cells were identified in the cups collecting in August and 485 

September 2009. This is the first record of Trichodesmium being exported to bathypelagic 486 

depth (>1500 m).   487 

Figure 5| POC flux vs. isotopic composition of the trap material (δ15NPN) from NOG (blue 488 

circles) and SOG (red circles). The black line is the best fit line of the linear model. Arrows 489 

with letter “T” mark the cups where Trichodesmium tufts were found. The strong inverse 490 

relationship between the magnitude of POC flux and δ15NPN at NOG signifies a potentially 491 

important role of local input of isotopically light N from N2 fixation (and dust deposition) in 492 

enhancing carbon sequestration at this site. 493 

  494 



Methods 495 

Particle collection and processing. Sinking particles were collected using 21-cup time-series 496 

Parflux Mark 78H–21 sediment traps (McLane Research Laboratories, USA) deployed on a 497 

bottom-tethered mooring at a depth of 3000 m in a water depth of >4200 m. At NOG, the traps 498 

were deployed from November 4, 2007 to October 5, 2008 and from November 23, 2008 to 499 

October 25, 2010, collecting particles over a total of 672 days. At SOG, the traps operated from 500 

May 11, 2008 to May 20, 2009 and from May 24, 2009 to June 20, 2010, collecting particles 501 

over a total of 766 days. Each trap cup collected for 14 or 21 days. Sample preservative 502 

consisted of a solution of sodium chloride (5 g L-1), di-sodium tetra-borate (0.25 g L-1), and 503 

formalin (5% vol/vol) made up with deep seawater. Upon recovery, pH was measured and 504 

found to be between 8.0 and 8.3. One mL of concentrated formalin solution was then added to 505 

the cups to supplement the existing formalin. Sample processing was carried out under dust- 506 

and metal-free conditions in a laminar flow cabinet using plastic- or glass-ware only. Prior to 507 

all analyses, zooplankton “swimmers” were identified under stereo-microscope (Meiji Techno, 508 

Japan) fitted with a photo-camera (Canon EOS-1000, Japan) and handpicked using PTFE-509 

coated tweezers (Dumont, Switzerland) and a plastic pipette (Fisher Scientific, UK). The 510 

preservative/particle mixture in each cup was then split into 8 sub-samples using a custom-511 

built rotary PVC splitter. Individual sub-samples from each cup were filtered, dried at 40ºC 512 

and analysed for particulate organic carbon, opal, calcite, and trace metals including 513 

aluminium. Selected sub-samples were also analysed for stable nitrogen isotope composition.    514 

Chemical analyses of the trap material. Particulate organic carbon (POC) was measured in 515 

tin capsules (HEKAtech GmbH) after removing carbonate by in situ acidification51 with 516 

concentrated hydrochloric acid and using a high-temperature combustion technique on a CHN 517 

analyser (HEKAtech GmbH EURO EA CHNS-O Elemental Analyser) with analytical 518 

precision of <0.1%). The median filter blank contribution to POC signal was 2.7%. The 519 



calculated limit of detection (LoD; based on three times standard deviations of the filter blanks) 520 

was 8.26 µg (n=20). Particulate Organic Matter (POM) was calculated as 2.2×POC (ref2). Splits 521 

for calcite were prepared by leaching in 0.4 mol L-1 nitric acid with calcium content measured 522 

by inductively coupled plasma optical emission spectrometry52 (Perkin-Elmer Optima 4300DV 523 

ICP-OES; analytical precision of <1%). Procedural blanks consisting of unused polycarbonate 524 

membranes treated with nitric acid contributed <1% to Ca signal. The LoD of the blank-525 

corrected Ca measurements was wavelength-dependent, ranging from 0.012 to 0.015 µg 526 

(n=10). Calcite mass flux was calculated by multiplying calcium-derived flux of particulate 527 

inorganic carbon by a factor of 8.3. Samples for opal were digested in 0.2 mol L-1 sodium 528 

hydroxide, neutralized with 0.1 mol L-1 hydrochloric acid and analysed as dissolved silicate on 529 

a SEAL QuAATro auto-analyser52, 53. The detection limit of the instrument was 0.3 µg. The 530 

median contribution of procedural blanks was 3.1%. The LoD of the filter-blank corrected 531 

samples was run-dependent ranging from 1.19 to 11.5 µg (n=9). Opal was calculated to be 2.4 532 

× biogenic silica flux assuming 10% water content52, 53. Labile and refractory fractions of 533 

aluminium in trap material were determined54. The labile fraction was extracted with 25% 534 

(vol/vol) acetic acid at room temperature, and then the more refractory fraction was fully 535 

digested in a mixture of concentrated nitric and hydrofluoric acids at 150°C. The residues of 536 

both fractions were redissolved in 0.5 mol L-1 nitric acid and analysed by inductively coupled 537 

plasma-mass spectrometry (Thermo Fisher Scientific Element 2 XR HR-ICPMS).  The LoD of 538 

blank corrected aluminium measurements was 0.12 ng g-1 (n=10); the concentrations in acid 539 

mix and blank filters were 0.764±0.8 ng g-1; (n=10) and 0.843±0.917 ng g-1 (n=8), respectively. 540 

The accuracy of the measurements was established using a range of Certified Reference 541 

Materials, including HISS-1, NIST-1648a and NIST-1573a. The recoveries in these reference 542 

materials were 97.3-104.1% for aluminium. Total trace metal concentration was determined by 543 

adding leach and digest metal fractions. Total aluminium mass flux was used to calculate 544 



lithogenic mass flux based on aluminium content of 7.1% in Saharan dust55 and 7.7% in 545 

Patagonian dust56 for NOG and SOG samples respectively. Stable nitrogen isotopic 546 

composition of sinking particulate nitrogen pool (δ15NPN) was determined from 14N/15N mass 547 

ratio measured using Micro Cube elemental analyser (Elementar Analysensysteme GmbH, 548 

Hanau, Germany) interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon 549 

Ltd., Cheshire, UK). The accuracy of the measurements was established using a set of 550 

laboratory standards calibrated against NIST Standard Reference Materials (IAEA-N1, IAEA-551 

N2, IAEA-N3, USGS-40, and USGS-41). The analytical precision of the δ15NPN measurements 552 

was <0.1‰, while the difference between duplicates ranged between 3.1 and 11% (n=4). 553 

Measurements were performed at the UC Davies Stable Isotope Facility, USA.   554 

 555 

Dust deposition flux. Direct and time-resolved measurements of dust deposition at NOG and 556 

SOG are not available.  At SOG we obtained monthly estimates of dust deposition using an 557 

atmospheric model14, 15, which utilizes reanalysis data (a combination of model and 558 

observations) to drive a dust chemical transport model, and was compared to long-term 559 

measurements of aerosol concentration. Dust deposition flux was modelled in four bins with 560 

the size distribution range of 0.1-0.5, 0.5-1.0, 1.0-2.5, and 2.5-10 μm. Dust deposition velocities 561 

were calculated within the model as a function of meteorological conditions and resulted in 562 

averages of 0.01, 0.029, 0.115, and 0.674 cm s-1 over our region. The modelled dust deposition 563 

fluxes were averaged for 3°×3° area centred at the SOG location. The uncertainty of the model 564 

output for the South Atlantic Ocean is hypothesised to be at least a factor of 10 due to scarcity 565 

and uncertainties in observational data and uncertainties in model source, transport and 566 

deposition processes14. Dust deposition flux at NOG was inferred from time-series dust 567 

concentrations measured over Barbados which is heavily influenced by air-masses from Sahara 568 

and Sahel deserts13. The details of dust sampling and processing are described in ref13.  Dust 569 



deposition flux was calculated by multiplying dust concentrations by a range of deposition 570 

velocities (0.01-1.2 cm s-1) characteristic of relatively fine mineral dust aerosols of <5 µm in 571 

size typically arriving to the remote open ocean57.  The resulting average dust deposition flux 572 

at NOG ranged from 0.085 to 10.2 mg m-2 s-1. Assuming a deposition velocity of 1 cm s-1, dust 573 

deposition flux is similar in magnitude to deep lithogenic flux at NOG. Thus, we considered 574 

this deposition velocity to be the most appropriate for calculations of daily dust deposition flux 575 

at NOG. 576 

 577 

Upper ocean hydrography. Eight-day composite sea-surface temperature (SST) data were 578 

recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor of NASA’s 579 

Aqua satellite at 9 km resolution and averaged for 3°×3° box centred at each trap location. The 580 

annual cycle of mixed layer depth at the trap sites was derived from the ARGO-based 581 

climatology58 averaged for 3°×3° area over the trap sites.  The base of the mixed layer was 582 

defined as the depth at which the density was 0.03 kg m-3 less than that at 10 m.  583 

  584 

Ancillary biogeochemical datasets were provided by the British Oceanographic Data Centre 585 

(BODC) and include vertical profiles of chlorophyll (archived data under accession numbers 586 

SOC050136 and SOC110235), nitrate concentrations (refs59, 60 and archived dataset under 587 

accession number MIT130172), isotopic composition of total nitrate (refs61, 62, 63), nitrogen 588 

fixation rates (refs22, 23, 24, 25), 14C-based primary production rates (ref64 and archived data with 589 

accession numbers PP-PML090162, PP-PML110236 and PP-PML120146),  590 

 591 

 Primary production. Depth-integrated daily rates of primary production for the relevant time 592 

period were estimated from the chlorophyll-based eight-day resolved Vertically Generalized 593 

Production Model (VGPM)16 and averaged for the 3°×3° area centred at the trap sites. The 594 



VGPM data were downloaded from the Ocean Productivity website 595 

(http://www.science.oregonstate.edu/ocean.productivity/). Within relevant time periods, the 596 

VGPM-based productivity rates at NOG (160±14 mg C m-2 d-1) and SOG (139±18 mg C m-2 597 

d-1) were comparable to the values measured directly at the trap sites in October-November 598 

2008-2011 (240±96 mg C m-2 d-1 at NOG and 204±84 mg C m-2 d-1 at SOG (see ancillary 599 

biogeochemical datasets above).  600 

 601 

Surface chlorophyll-a concentration. Eight-day composite surface chlorophyll-a data were 602 

recorded by MODIS Aqua at 9 km resolution and averaged for 3°×3° box centred at each trap 603 

location. MODIS Aqua calculates near-surface chlorophyll concentrations from a model of 604 

ocean colour using an empirical relationship. 605 

 606 

Contribution of newly fixed nitrogen to the stable nitrogen isotope signal in trap material. 607 

The δ15N of the trap material reflects both the autotrophic particle formation and the subsequent 608 

heterotrophic transformations. In the latter, the diagenetic fractionation can potentially alter 609 

δ15N of the bulk nitrogen export and sequestration. No significant relationship was observed 610 

between C/N ratios and δ15N of nitrogen export at NOG (r2=0.02, n=12) while at SOG, this 611 

relationship was positive but weak and insignificant (r2=0.25, n=12). This suggests that the 612 

observed variations in δ15N of the trap material were determined predominantly during algal 613 

production, with no significant influence from detrital material and/or non-phytoplankton 614 

organisms65. At both sites isotopic fractionation following nitrogen assimilation is expected to 615 

be negligible due to constant nitrogen limitation in the surface waters29. Therefore, δ15N of the 616 

produced organic matter should reflect the composition of dominating nitrogen sources to the 617 

euphotic zone, namely, upward diffusive flux of deep-water nitrate and N2 fixation both having 618 

distinct isotopic signals. In addition, in the northern gyre, atmospheric dust deposition can 619 

http://www.science.oregonstate.edu/ocean.productivity/


significantly contribute to the total pool of new nitrogen31, 66. Using equation (1) we describe 620 

isotopic composition of nitrogen export as mixing between diffused nitrogen from the upper 621 

thermocline and nitrogen from external source, represented by either diazotrophy or 622 

atmospheric deposition at NOG, and diazotrophy only at SOG: 623 

 δ15NPN = (f1×δ15Nf1) + (f2×δ15Nf2) (1) 

where f1 and f2 and δ 15N denote fractions and isotopic signatures of dominant nitrogen sources. 624 

We estimate the percent contribution of these sources from a single choice of their respective 625 

endmember δ15N values: +2.73‰ (NOG) and +6.22‰ (SOG) for nitrate diffusing from the 626 

shallow thermocline across the concentration gradient; -1.0‰ for N2 fixation (both sites), -627 

3.1‰ for bulk aerosol input (NOG only). Due to sensitivity of the two-endmember mixing 628 

model to the values of the chosen endmembers, we performed sensitivity analyses to account 629 

for uncertainty of the changing δ15N endmembers on the fraction of δ15NPN (in %) originating 630 

from this source at each site, similar to isotopic assessment in ref28. The choices of δ15N 631 

endmembers for each nitrogen source and those used in the sensitivity tests are described in 632 

the section below and the results are summarised in Supplementary Table 1.    633 

Sensitivity analyses and δ15N endmember choice. 634 

Nitrate endmember: The choice of nitrate δ15N endmember was based on the biogeochemical 635 

data (nitrate δ15N, nitrate and chlorophyll concentrations, PAR) obtained at the NOG and SOG 636 

sites during AMT cruises in May-June 2005 and October 2005, and US-GEOTRACES cruise 637 

GA03 in December 2011 (see ancillary biogeochemical datasets above).  638 

At the permanently oligotrophic NOG and SOG sites, winter mixing is weak, and thermocline 639 

nitrate is supplied into the euphotic zone largely by turbulence-driven upward diffusion67. The 640 

magnitude of diffusive nitrate flux is governed by nitrate concentration gradients as the changes 641 

in turbulent diffusivity are relatively small67. At both sites, nitrate concentrations remain at 642 



nanomolar levels (< 0.01 µmol L-1) throughout the top 130-150 m and increase below, 643 

signifying the position of the nitracline (defined by a nitrate concentration of 0.1 µmol L-1 (e.g. 644 

ref68). The largest nitrate flux with a characteristic δ15N signature is therefore expected at the 645 

depth of the maximum nitrate concentration gradient typically found at depths near the base of 646 

the euphotic zone (0.1 % surface PAR; includes the deep chlorophyll maximum).  647 

Referring to vertical profiles of nitrate and chlorophyll concentrations, we calculate 648 

concentration-weighted average nitrate δ15N (ref33) from the top of the nitracline, where nitrate 649 

concentrations begin to consistently increase, to the base of the euphotic zone. At NOG this 650 

yields nitrate δ15N of +2.73±0.36 ‰ (n=5) for the depth range of 137-191 m. In our isotopic 651 

budgets this value represents an isotopic signal of nitrogen pool influenced by N2 fixation and 652 

atmospheric deposition, and sustained over time in the shallow thermocline. This is achieved 653 

through both the internal cycle of low- δ15N nitrate assimilation and subsequent 654 

remineralisation and 2) accumulation of low- δ15N nitrate imported during the northward water 655 

mass transit7, 30. This nitrogen pool has not yet been homogenised with the large global ocean 656 

nitrate reservoir (~4.8‰) or 15N-enriched through denitrification29, 30. At SOG the most 657 

relevant depth range for measured nitrate δ15N spanned 226-230 m, substantially deeper than 658 

the base of the euphotic zone. The corresponding mean δ15N of +6.22±0.35‰ may thus 659 

overestimate the value for the shallower waters, where preferential remineralisation of 14N may 660 

introduce a 15N-depleted signal to the nitrogen pool29.  661 

For the primary sensitivity test (Supplementary Table 1) we used the minimal nitrate δ15N 662 

observed in the upper thermocline at NOG (+0.96‰ at 137 m depth) to estimate the least 663 

contribution of local N2 fixation to δ15NPN. We also tested nitrate δ15N averaged from the top 664 

of nitracline down to 26.8 kg m-3 isopycnal surface, which marks the main thermocline depth 665 

at the study sites7, 69. The corresponding value at NOG was +3.53±0.40‰ (n=13) for the 136-666 



421 m depth range; the SOG value was +6.35±0.32 ‰ (n=3) for 226-306 m depth range. 667 

Finally, we included the oceanic global mean δ15N (+4.8‰; ref29) to compare our isotope 668 

budgets with published data.    669 

Nitrogen fixation endmember: We chose the mean δ15N for diazotrophic biomass (-1±1‰) 670 

to represent the N2 fixation endmember at both sites 29, 70, 71. Assuming the mean nitrate δ15N 671 

signal in the shallow thermocline, the range of the isotopic signal for diazotrophic nitrogen (-672 

2‰ to 0‰) generates average contributions of 39.8-68.5% and 26.1-34.4% to δ15NPN at NOG 673 

and SOG, respectively (Supplementary Table 1).   674 

Atmospheric deposition endmember: Atmospheric fluxes supply approximately ~9.9×109 675 

mol N yr-1 to the central North Atlantic gyre and 5.8 ×109 mol N yr-1 to the South Atlantic 676 

gyre72. Although these values are notably smaller than regional estimates of new nitrogen 677 

inputs from diazotrophy (20×1011 mol N yr-1; ref73), recent studies30, 31, 35 suggest that 678 

deposition fluxes can significantly lower the δ15N of the nitrogen pool. The published data on 679 

δ15N in atmospheric fluxes in the open Atlantic Ocean is extremely scarce. Previous studies31, 680 

35, 74, 75, 76 report a wide range of δ15N in bulk aerosol and rainfall samples (-6.8‰ to +1.7‰). 681 

Given that dry deposition dominates atmospheric input at NOG, a value close to an average 682 

isotopic signal of bulk aerosols seems the most appropriate to represent the dust endmember at 683 

NOG. We thus choose δ15N of -3.1‰, based on the mean δ15N values measured in the Sahara-684 

influenced aerosol samples collected the sub-tropical North Atlantic31, 74 and Crete76. For the 685 

sensitivity test, we varied δ15N of aerosol N across the full range, also including annual (-4.5‰) 686 

and seasonal cold (-6.8‰; October-March) and warm (-1.9‰; April-September) averages 687 

measured in the Bermuda rainfall35, 74, 75 (Supplementary Table 1).  We find that with the nitrate 688 

δ15N of 2.73‰, aerosol nitrogen can account for a sizable fraction of δ15N of nitrogen export 689 

at NOG (21.7-176%). Therefore, with nitrogen input equal or greater to magnitude of N2 690 

fixation, dust deposition can have a similar or greater effect on the isotopic budget of trap 691 



material from NOG. Hence, future studies should include the measurements of both magnitude 692 

and δ15N of dust deposition and N2 fixation to avoid under- or over-estimation of the 693 

importance of each of source.  694 

Assessment of ballast effect of lithogenic flux. We examined the relationship between POC 695 

and (bio)mineral at NOG and SOG using POC flux model by ref2 . The model divides POC 696 

flux into fractions ballasted by biomineral (opal + calcite; POCbio) and lithogenic (POClith) 697 

particles, and freely sinking POC (POCfree).  We use multiple linear regression to fit the particle 698 

flux data into equation (2) and determine correlation coefficients a, b and c (hereafter, carrying 699 

coefficients) for each fraction, following approach in refs2, 42, 77.   700 

 POC flux =  a × POCbio  +  b × POClith +  c × POCfree  (2) 

Carrying coefficients only reflect the size of the ballast-normalized fraction of POC flux, but 701 

not their absolute magnitudes, and are used to calculate the relative fraction (in %) of POC 702 

associated with each ballast type42, 77. We further assume that the POCfree fraction is negligible 703 

at 3000 m depth and force multiple linear regression to pass through zero2. The strong temporal 704 

variability of dust deposition limits the relevance of the annual-scale approach for estimating 705 

the role of lithogenic ballast to POC flux. Hence, we first assess the effect of lithogenic ballast 706 

based on different POC sequestration scenarios, namely, (1) elevated POC flux (≥120% of 707 

annual mean) at NOG, (2) POC flux at NOG outside scenario (1), (3) POC flux at SOG. We 708 

evaluated the sensitivity of these results by performing multiple linear regression on the NOG 709 

flux dataset separated according to the high and low lithogenic fluxes (Supplementary Table 710 

2). Our approach differs from that applied previously by refs2, 42, 77 in which carrying 711 

coefficients for both calcite and opal were determined. This is due to strong collinearity 712 

observed between calcite and opal in all POC-based groups, violating the independence 713 

assumption of multiple linear regression, as further determined by ridge regression analysis.  714 

The resulting carrying coefficients and calculated proportion of ballast-associated POC flux in 715 



each surveyed group are summarised in Supplementary Table 2. The carrying coefficients for 716 

lithogenic material compared well with the global and the north Atlantic means (0.052, and 717 

0.058, respectively)2 during low POC flux, but exceeded these values during high fluxes and 718 

overall at SOG. We acknowledge that the relatively large carrying coefficient for lithogenic 719 

ballast in the SOG group compared to the NOG groups and other time-series might be an 720 

overestimation introduced by a nearly 1:1 ratio between POC and lithogenic fluxes and a their 721 

strong positive correlation (Spearman’s p = 0.91). As a result, the proportion of POC flux 722 

ballasted by lithogenic material appears to be comparable between SOG and scenario (2) at 723 

NOG, despite the significant difference in their lithogenic fluxes (Supplementary Table 2).  724 

Data availability: The data analysed during this study are available from the corresponding 725 

author upon reasonable request. The supporting data for this study are available from the 726 

repository of the British Oceanographic Data Centre upon request.  727 
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SUPPLEMENTARY INFORMATION 858 

Supplementary Table 1| Sensitivity analysis of the choice endmember δ15N value on 859 

calculated source contribution (%) to isotopic signal of nitrogen flux at 3000 m depth 860 

Nitrate endmember 

δ15N (‰) 

N2 fixation (%)  Dry deposition (%)  Rainfall (%) 

Min Choice Max  Min Choice Max  Min Choice Max 

NOG  -2 -1 0  -6 -3.1 +1.7  -6.8 -4.5 -1.9 

+0.96 (min NOG)  2.82 4.25 8.68  1.20 2.1 -11.3  1.07 1.53 2.91 

+2.73 (137- 191 m)  39.8 50.4 68.5  21.7 32.4 176.2  19.8 26.2 40.7 

+3.53 (137-421 m)  48.0 58.6 75.2  27.4 40.0 145.0  25.7 33.0 48.9 

+4.8*  57.7 67.7 81.7  36.3 49.7 126.6  33.8 42.2 58.6 

SOG  -2 -1 0         

+6.22 (226-230 m) 26.1 29.7 34.4         

+6.35 (226-306 m)  27.2 30.9 35.8         

+4.8*   10.6 12.5 15.1         
            

The source and choice of δ15N endmember values are described in Methods. Depth-range over which measured nitrate δ15N values 

were averaged (nitrate concentration weighted) is given in parentheses. Bold values show the percentage contribution values 

calculated with the preferred endmember δ15N values.   

*global average δ15N of deep-water nitrate (ref29)  

 

 861 
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Supplementary Table 2| Results of multiple linear regression model  863 

Group 

Mean flux (mg m-2 d-1)  Carrying coefficient*  Ballasted POC flux (%) 

R2‡ 

POC 
Opal + 

Calcite 
Lithogenic  

Opal + 

Calcite 
Lithogenic  

Opal + 

Calcite 
Lithogenic 

 

NOG groups    
          

High POC (10)  1.64±0.43 17.4±6.7 9.14±1.9  0.027ns 0.126 29.1 70.1 0.94 

Low POC  (31) 0.88±0.21 13.0±3.5 8.38±2.2  0.036 0.048 53.7 45.7 0.98 

          

High Lith (9) 1.31±0.58 15.6±1.81 11.3±1.44  0.067 ns 0.025 ns 79.7 21.2 0.87 

Low Lith (32) 0.99±0.36 13.7±5.27 7.80±1.62  0.045 0.048 62.3 37.6 0.95 

          

SOG group (40) 0.49±0.17 8.62±2.96 0.54±0.21  0.032 0.371 57.2 41.0 0.96 

          

Values in parentheses indicate number of data points (=collection cups) pulled into each group. Statistically not significant carrying 

coefficients (p>0.01) are marked with ‘ns’.  

* Correlation coefficients of multiple linear regression determined from equation (2) (see Methods). 

‡ Overall model fit  
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 865 

Supplementary Figure 1| Annual cycle of sea-surface temperature, mixed layer depth and 866 

surface chlorophyll-a at NOG (a) and SOG (b). Monthly-averaged sea-surface temperature 867 

and chlorophyll-a concentrations are recorded by the MODIS-A satellite at 9km resolution 868 

during 2007-2010. Error bars show one standard deviation of the temporal mean. The mixed 869 

layer depth is derived from the ARGO-based climatology. Error bars show one standard 870 

deviation of the areal mean.  In a and b, dashed line indicates the approximate depth of 871 

nutricline (𝐍𝐎𝟑
−>0.1µmol L-1), based on in situ nitrate measurements during AMT cruises 18-872 

21 in October-November 2008-2010 (see Methods for data sources). In a, red letter “T” point 873 

to the months, when Trichodesmium “tufts” were recovered in the NOG traps.   874 



 875 

 876 

Supplementary Figure 2| Nitrogen isotope data for water column total nitrate, suspended 877 

particles and trap material near the study. Concentrations of nitrate and chlorophyll 878 

measured at the study sites are also shown. Data sources are described in the figure legend with 879 

complete references provided in the Methods section.    880 
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