83 research outputs found

    A scaling law for accretion zone sizes

    Get PDF
    Current theories of runaway planetary accretion require small random velocities of the accreted particles. Two body gravitational accretion cross sections which ignore tidal perturbations of the Sun are not valid for the slow encounters which occur at low relative velocities. Wetherill and Cox have studied accretion cross sections for rocky protoplanets orbiting at 1 AU. Using analytic methods based on Hill's lunar theory, one can scale these results for protoplanets that occupy the same fraction of their Hill sphere as does a rocky body at 1 AU. Generalization to bodies of different sizes is achieved here by numerical integrations of the three-body problem. Starting at initial positions far from the accreting body, test particles are allowed to encounter the body once, and the cross section is computed. A power law is found relating the cross section to the radius of the accreting body (of fixed mass)

    The effect of gas drag on the growth of protoplanets -- Analytical expressions for the accretion of small bodies in laminar disks

    Full text link
    Planetary bodies form by accretion of smaller bodies. It has been suggested that a very efficient way to grow protoplanets is by accreting particles of size <<km (e.g., chondrules, boulders, or fragments of larger bodies) as they can be kept dynamically cold. We investigate the effects of gas drag on the impact radii and the accretion rates of these particles. As simplifying assumptions we restrict our analysis to 2D settings, a gas drag law linear in velocity, and a laminar disk characterized by a smooth (global) pressure gradient that causes particles to drift in radially. These approximations, however, enable us to cover an arbitrary large parameter space. The framework of the circularly restricted three body problem is used to numerically integrate particle trajectories and to derive their impact parameters. Three accretion modes can be distinguished: hyperbolic encounters, where the 2-body gravitational focusing enhances the impact parameter; three-body encounters, where gas drag enhances the capture probability; and settling encounters, where particles settle towards the protoplanet. An analysis of the observed behavior is presented; and we provide a recipe to analytically calculate the impact radius, which confirms the numerical findings. We apply our results to the sweepup of fragments by a protoplanet at a distance of 5 AU. Accretion of debris on small protoplanets (<50 km) is found to be slow, because the fragments are distributed over a rather thick layer. However, the newly found settling mechanism, which is characterized by much larger impact radii, becomes relevant for protoplanets of ~10^3 km in size and provides a much faster channel for growth.Comment: accepted for publication in Astronomy & Astrophysic

    Accretion Rates of Planetesimals by Protoplanets Embedded in Nebular Gas

    Full text link
    When protoplanets growing by accretion of planetesimals have atmospheres, small planetesimals approaching the protoplanets lose their energy by gas drag from the atmospheres, which leads them to be captured within the Hill sphere of the protoplanets. As a result, growth rates of the protoplanets are enhanced. In order to study the effect of an atmosphere on planetary growth rates, we performed numerical integration of orbits of planetesimals for a wide range of orbital elements and obtained the effective accretion rates of planetesimals onto planets that have atmospheres. Numerical results are obtained as a function of planetesimals' eccentricity, inclination, planet's radius, and non-dimensional gas-drag parameters which can be expressed by several physical quantities such as the radius of planetesimals and the mass of the protoplanet. Assuming that the radial distribution of the gas density near the surface can be approximated by a power-law, we performed analytic calculation for the loss of planetesimals' kinetic energy due to gas drag, and confirmed agreement with numerical results. We confirmed that the above approximation of the power-law density distribution is reasonable for accretion rate of protoplanets with one to ten Earth-masses, unless the size of planetesimals is too small. We also calculated the accretion rates of planetesimals averaged over a Rayleigh distribution of eccentricities and inclinations, and derived a semi-analytical formula of accretion rates, which reproduces the numerical results very well. Using the obtained expression of the accretion rate, we examined the growth of protoplanets in nebular gas. We found that the effect of atmospheric gas drag can enhance the growth rate significantly, depending on the size of planetesimals.Comment: 41 pages, 14 figures, accepted for publication in Icaru

    Metallicity of the Massive Protoplanets Around HR 8799 If Formed by Gravitational Instability

    Full text link
    The final composition of giant planets formed as a result of gravitational instability in the disk gas depends on their ability to capture solid material (planetesimals) during their 'pre-collapse' stage, when they are extended and cold, and contracting quasi-statically. The duration of the pre-collapse stage is inversely proportional roughly to the square of the planetary mass, so massive protoplanets have shorter pre-collapse timescales and therefore limited opportunity for planetesimal capture. The available accretion time for protoplanets with masses of 3, 5, 7, and 10 Jupiter masses is found to be 7.82E4, 2.62E4, 1.17E4 and 5.67E3 years, respectively. The total mass that can be captured by the protoplanets depends on the planetary mass, planetesimal size, the radial distance of the protoplanet from the parent star, and the local solid surface density. We consider three radial distances, 24, 38, and 68 AU, similar to the radial distances of the planets in the system HR 8799, and estimate the mass of heavy elements that can be accreted. We find that for the planetary masses usually adopted for the HR 8799 system, the amount of heavy elements accreted by the planets is small, leaving them with nearly stellar compositions.Comment: accepted for publication in Icaru

    Dust accretion onto high-mass planets

    Get PDF
    We study the accretion of dust particles of various sizes onto embedded massive gas giant planets, where we take into account the structure of the gas disk due to the presence of the planet. The accretion rate of solids is important for the structure of giant planets: it determines the growth rate of the solid core that may be present as well as their final enrichment in solids. We use the RODEO hydrodynamics solver to solve the flow equations for the gas, together with a particle approach for the dust. The solver for the particles' equations of motion is implicit with respect to the drag force, which allows us to treat the whole dust size spectrum. We find that dust accretion is limited to the smallest particle sizes. The largest particles get trapped in outer mean-motion resonances with the planet, while particles of intermediate size are pushed away from the orbit of the planet by the density structure in the gas disk. Only particles smaller than approximately s_max =10 micron may accrete on a planet with the mass of Jupiter. For a ten times less massive planet s_max=100 micron. The strongly reduced accretion of dust makes it very hard to enrich a newly formed giant planet in solids.Comment: 15 pages, 18 figures, accepted for publication in A&

    Models of Giant Planet formation with migration and disc evolution

    Full text link
    We present a new model of giant planet formation that extends the core-accretion model of Pollack etal (1996) to include migration, disc evolution and gap formation. We show that taking into account these effects can lead to a much more rapid formation of giant planets, making it compatible with the typical disc lifetimes inferred from observations of young circumstellar discs. This speed up is due to the fact that migration prevents the severe depletion of the feeding zone as observed in in situ calculations. Hence, the growing planet is never isolated and it can reach cross-over mass on a much shorter timescale. To illustrate the range of planets that can form in our model, we describe a set of simulations in which we have varied some of the initial parameters and compare the final masses and semi-major axes with those inferred from observed extra-solar planets.Comment: Accepted in Astronomy & Astrophysic

    Models of the formation of the planets in the 47 UMa system

    Get PDF
    Formation of planets in the 47 UMa system is followed in an evolving protoplanetary disk composed of gas and solids. The evolution of the disk is calculated from an early stage, when all solids, assumed to be high-temperature silicates, are in the dust form, to the stage when most solids are locked in planetesimals. The simulation of planetary evolution starts with a solid embryo of ~1 Earth mass, and proceeds according to the core accretion -- gas capture model. Orbital parameters are kept constant, and it is assumed that the environment of each planet is not perturbed by the second planet. It is found that conditions suitable for both planets to form within several Myr are easily created, and maintained throughout the formation time, in disks with α0.01\alpha \approx 0.01. In such disks, a planet of 2.6 Jupiter masses (the minimum for the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in \~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer planet) may be formed at 3.95 AU from the star in about the same time. The formation of planets is possible as a result of a significant enhancement of the surface density of solids between 1.0 and 4.0 AU, which results from the evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    The angular momentum of two collided rarefied preplanetesimals and the formation of binaries

    Full text link
    This paper studies the mean angular momentum associated with the collision of two celestial objects in the earliest stages of planet formation. Of primary concern is the scenario of two rarefied preplanetesimals (RPPs) in circular heliocentric orbits. The theoretical results are used to develop models of binary or multiple system formation from RPPs, and explain the observation that a greater fraction of binaries originated farther from the Sun. At the stage of RPPs, small-body satellites can form in two ways: a merger between RPPs can have two centers of contraction, or the formation of satellites from a disc around the primary or the secondary. Formation of the disc can be caused by that the angular momentum of the RPP formed by the merger is greater than the critical angular momentum for a solid body. One or several satellites of the primary (moving mainly in low-eccentricity orbits) can be formed from this disc at any separation less than the Hill radius. The first scenario can explain a system such as 2001 QW322 where the two components have similar masses but are separated by a great distance. In general, any values for the eccentricity and inclination of the mutual orbit are possible. Among discovered binaries, the observed angular momenta are smaller than the typical angular momenta expected for identical RPPs having the same total mass as the discovered binary and encountering each other in circular heliocentric orbits. This suggests that the population of RPPs underwent some contraction before mergers became common.Comment: 12 pages, Monthly Notices of Royal Astron. Society, in pres

    Oligarchic planetesimal accretion and giant planet formation

    Get PDF
    Aims. In the context of the core instability model, we present calculations of in situ giant planet formation. The oligarchic growth regime of solid protoplanets is the model adopted for the growth of the core. Methods. The full differential equations of giant planet formation were numerically solved with an adaptation of a Henyey-type code. The planetesimals accretion rate was coupled in a self-consistent way to the envelope's evolution. Results. We performed several simulations for the formation of a Jupiter-like object by assuming various surface densities for the protoplanetary disc and two different sizes for the accreted planetesimals. We find that the atmospheric gas drag gives rise to a major enhancement on the effective capture radius of the protoplanet, thus leading to an average timescale reduction of 30% -- 55% and ultimately to an increase by a factor of 2 of the final mass of solids accreted as compared to the situation in which drag effects are neglected. With regard to the size of accreted planetesimals, we find that for a swarm of planetesimals having a radius of 10 km, the formation time is a factor 2 to 3 shorter than that of planetesimals of 100 km, the factor depending on the surface density of the nebula. Moreover, planetesimal size does not seem to have a significant impact on the final mass of the core.Comment: 12 pages, 10 figures, accepted for publication in A&
    corecore