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ABSTRACT

Aims. In the context of the core instability model, we present calculations of in situ giant planet formation. The oligarchic growth
regime of solid protoplanets is the model adopted for the growth of the core. This growth regime for the core has not been considered
before in full evolutionary calculations of this kind.

Methods. The full differential equations of giant planet formation were numerically solved with an adaptation of a Henyey-type code.
The planetesimals accretion rate was coupled in a self-consistent way to the envelope’s evolution.

Results. We performed several simulations for the formation of a Jupiter-like object by assuming various surface densities for the
protoplanetary disc and two different sizes for the accreted planetesimals. We first focus our study on the atmospheric gas drag that
the incoming planetesimals suffer. We find that this effect gives rise to a major enhancement on the effective capture radius of the
protoplanet, thus leading to an average timescale reduction of ~30%—-55% and ultimately to an increase by a factor of 2 of the final
mass of solids accreted as compared to the situation in which drag effects are neglected. In addition, we also examine the importance
of the size of accreted planetesimals on the whole formation process. With regard to this second point, we find that for a swarm of
planetesimals having a radius of 10 km, the formation time is a factor 2 to 3 shorter than that of planetesimals of 100 km, the factor
depending on the surface density of the nebula. Moreover, planetesimal size does not seem to have a significant impact on the final

mass of the core.
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1. Introduction

Although the giant planets of the Solar System are known from
centuries ago and the existence of other planetary systems har-
bouring Jupiter-like objects was confirmed in 1995 (Mayor &
Queloz 1995), the mechanism of giant planet formation is still
not solved. In fact, two major models currently coexist: the core
accretion model — alternatively referred to as the nucleated insta-
bility model — and the gas instability model (for a detailed review
on the theory of giant planet formation see, e.g., Wuchterl et al.
2000; Lissauer & Stevenson 2007; Durisen et al. 2007).

The core accretion model assumes that giant planets form,
roughly speaking, in a two-step process (e.g. Mizuno 1980;
Bodenheimer & Pollack 1986). First, analogous to terrestrial
planets, a solid core is formed by coagulation of planetesimals.
Once the core is massive enough to capture a significant amount
of gas from the surrounding nebula, the characteristic exten-
sive envelope of these objects forms. Gravitational gas binding
occurs mainly in two different regimes (Pollack et al. 1996).
Initially, gas accretion proceeds relatively quietly. This stage
ends when the mass of the envelope is comparable to the mass
of the core. When this critical mass is reached, a gaseous run-
away growth completes the formation of the planet, accreting
large amounts of gas in a very short time.
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Evidence that the giant planets of the Solar System have a
core approximately a dozen times the mass of Earth, favours
the nucleated instability scenario over the gas instability hy-
pothesis. However, one of the problems that still remains open
with the core accretion model is how to reconcile the forma-
tion timescales evolving from numerical simulations with those
obtained by observations of circumstellar discs (e.g., Haisch
et al. 2001; Chen & Kamp 2004). Observational evidence re-
stricts the lifetime of protoplanetary discs to less than 107 yr.
This fact puts a limit on the whole process: giant planets should
be formed before the dissipation of the disc. After the pioneer-
ing work of Pollack et al. (1996), in which detailed calcula-
tions of giant planet formation were performed, efforts have been
made to solve this problem. In particular, different scenarios that
could alleviate the timescale issue have been explored, includ-
ing: planet migration (Alibert et al. 2005), grain opacity reduc-
tion (Podolak 2003; Hubickyj et al. 2005), and core formation
in the centre of an anticyclonic vortex (Klahr & Bodenheimer
2006) among others. To this end, most authors who adopt a
time-dependent solid accretion rate for the core (Pollack et al.
1996; Hubickyj et al. 2005; Alibert et al. 2005) prescribe a rapid
one (Greenzweig & Lissauer 1992) which leads to the forma-
tion of a massive core in a few hundred thousand years. This
accretion rate slows down when most of the material within the
feeding zone is swallowed by the embryo. With this core accre-
tion rate, the formation timescale of a core of about 10 Mg usu-
ally only represents a small fraction of the whole formation pro-
cess (Pollack et al. 1996). However, N-body simulations show
that a solid embryo with the Moon mass, or even smaller, could
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gravitationally perturb the swarm of planetesimals around it,
heating the disc and decreasing solid accretion long before
the isolation mass is achieved (Ida & Makino 1993). The run-
away growth of the large planetesimals (the first stage in proto-
planet building) then switches to a slower, self-limiting mode.
This regime is known as “oligarchic growth” (Kokubo & Ida
1998, 2000, 2002; Thommes et al. 2003). Numerical and semi-
analytical calculations were made to estimate the formation
timescale of a solid protoplanet via the oligarchic growth (Ida
& Makino 1993; Thommes et al. 2003). However, no full evolu-
tionary calculations of gaseous giant planet formation prescrib-
ing this accretion rate have been made to date.

In the frame of the core instability model, this paper is in-
tended to study the in situ formation of a protoplanet in a cir-
cular orbit around the Sun, at the current position of Jupiter.
To this end, the numerical code developed by Benvenuto &
Brunini (2005) for self-consistent calculation of giant planet for-
mation and evolution has been updated. Motivated by the work
of Thommes et al. (2003), where the oligarchic regime was ap-
plied to growing solid embryos in the absence of an atmosphere,
we generalise this accretion model in order to adopt it as the
time-dependent accretion rate for the core. The accretion rate
employed in Thommes et al. (2003) is modified to take into
account the gas drag that incoming planetesimals suffer due to
the presence of the atmosphere, as it enlarges the protoplanet’s
capture cross-section. Inaba & Ikoma (2003) derived a semi-
analytical core accretion rate for a protoplanet surrounded by
a gaseous atmosphere and estimated the enhancement in the col-
lisional cross-section it produced. In their study, the structure of
the atmosphere is calculated only for certain core masses and not
as a result of an evolutionary sequence of models. In our study,
the solids accretion rate is coupled to the gas accretion rate, lead-
ing to a self-consistent evolutionary calculation of the envelope’s
structure. Hence, a more accurate estimation of the enlargement
of the effective accretion cross-section of the protoplanet can be
made.

This paper is organised as follows: in Sect. 2 we describe
the improvements in our numerical code, placing particular em-
phasis on the treatment of the mass accretion rate of planetesi-
mals onto the core. In connection with the growth of the core,
we summarise some conceptual aspects and the main results re-
garding the oligarchic growth of a solid protoplanet. In Sect. 3
we present a simulation which is compared to results obtained
by other authors which use a different planetesimals accretion
rate. This is intended to show the impact that the selected core
accretion model has on the formation of a giant planet. We then
present the results arising from running our code for simulations
of the formation of a Jupiter-like planet for several protoplan-
etary disc surface densities. We also explore the relevance of
planetesimal size, comparing runs for a swarm of planetesimals
having a radius of 10 and 100 km. Section 4 is devoted to dis-
cussing our results in connection with other related studies and
to summarising the main conclusions of our study.

2. Outline of the overall model

The description of the numerical model developed for the calcu-
lation of giant planet formation and evolution was introduced in
Benvenuto & Brunini (2005). Since then, several changes have
been made to the code. In this section we will summarise the
main improvements.
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Table 1. Characteristics of the Minimum Mass Solar Nebula at 5.2 AU.

Temperature 133K
Solids surface density 3.37 gcm™?
Gas volume density 1.5x 107" gcm™

2.1. The protoplanetary disc

We characterise the protoplanetary disc with only three param-
eters: the temperature profile, the solids surface density and the
gas volume density, under the hypothesis of the model proposed
by Hayashi (1981).

We consider a power law for the temperature profile

T (a)=aTes (1 AU)TSa™?, (1)

where a is the distance to the central star, T;ff is the effective
temperature of the central star, relative to that of the Sun (it is a
dimensionless magnitude and in the cases considered in this ar-
ticle T} = 1), Teg(1 AU) is the effective temperature of the disc
at 1 AU which was fixed at 280 K (the current temperature in the
Solar System at that location), ¢ is the temperature index (here
g = 1/2) and « is a factor that compensates for the fact that the
central star was more luminous in the early epoch (a was elected
to be 1.08). The snow line, agnow, is located at T = 170 K, which
corresponds in this model to a = 3.16 AU.

The definition of the Minimum Mass Solar Nebula (MMSN)
assumes a solids surface mass density profile that is a power law

@)

where we fixed o, (1 AU) =10 g cm2, p = 3/2 and 5 is the
enhancement factor beyond the snow line,

Z(a) = Nice 0 (1 AU) a” P,

1 ifa < agow
Miee =Y 4 if a > agon.

Although in this equation the assumption of a uniformly spread
mass of solids is implicit, for the calculation of giant planet for-
mation it is also necessary to adopt a planetesimal mass and
radius (see the following sections). In this study we consider
that the planetesimal bulk density, p,,, is constant and equal to
1.5 g cm™3 and that all planetesimals in the disc are of the same
size.
The gas volume density of the solar nebula is given by

-b
a
= 0,(1 AU) —, 3
pla) = o1 AU) 7 3)
where o, (1 AU) is the gas surface density at 1 AU taken to be
2x 103 gem™2, b = 3/2 and H is the gas disc scale height,

H(a) =0.05a*"* x (1.5 % 10" cm). o))

Note that a is always in AU but H must be in cm for p (a) to be
in g cm~? giving the factor 1.5 x 10" cm.

The main features of the MMSN at 5.2 AU are reported in
Table 1.

2.2. The core
2.2.1. The oligarchic growth of protoplanets

Assuming that kilometre sized planetesimals can be formed in a
protoplanetary disc, it is generally accepted that the first seeds
for rocky protoplanets emerge through planetesimal accretion.
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The early stage in protoplanetary growth is the so-called “run-
away growth” (Greenberg et al. 1978; Kokubo & Ida 1996).
Runaway growth can be summarised as follows: random veloc-
ities of large planetesimals are smaller than those of small plan-
etesimals due to dynamical friction. This fact favours the gravita-
tional focusing of large planetesimals which leads them to grow
in a runaway fashion. These objects rapidly become more mas-
sive than the rest of the planetesimals in the swarm and the first
planetary embryos appear in the disc. During the runaway stage,
both the growth rate of a protoplanet and the mass ratio of a pro-
toplanet and planetesimals increase with time.

Ida & Makino (1993) investigated the post-runaway evo-
lution of planetesimals’ eccentricities and inclinations due to
scattering by a protoplanet. When runaway embryos become
massive enough to affect planetesimals’ random velocities, the
growth regime switches to a slower one. Ida & Makino (1993)
called this stage “the protoplanet-dominated stage”, as proto-
planets are now responsible for the larger random velocities of
planetesimals which, in turn, decreases the growth rate of pro-
toplanets. In their study of this regime, the authors performed
3D N-body simulations to investigate the evolution of eccentric-
ities and inclinations of a system of equal-mass planetesimals
and one protoplanet. Protoplanet-planetesimal and planetesimal-
planetesimal interactions were both taken into account, but no
accretion was considered. Ida & Makino (1993) found that plan-
etesimals are strongly scattered by the protoplanet and part of
the energy they acquire during the perturbation is distributed af-
terwards among other planetesimals. The excited planetesimals
determine a “heated region” around the protoplanet twice the
width of the feeding zone of the protoplanet. In this region, the
eccentricities e,, and inclinations i, of planetesimals are highly
perturbed and, as random velocities of planetesimals are well
approximated by

bt = (2N + (2) 2, ®)

the increase in e, and i,, directly implies an increase in random
velocities (v is the Keplerian velocity, (e,i)'/ 2 ((ii)l/ %) is the
planetesimals rms eccentricity (inclination)).

Ida & Makino (1993) then proposed a two-step growth for
the protoplanets. In the first stage, protoplanets grow in a run-
away fashion in the usual sense: the stirring among planetesimals
is dominated by planetesimals themselves and relative velocities
are low, favouring the rapid growth of the embryos. When a pro-
toplanet is massive enough to perturb the surrounding planetesi-
mals, the system enters the protoplanet-dominated stage. The nu-
merical simulations show that this stage occurs in the dispersion-
dominated regime and the relationship between mean planetes-
imals’ eccentricities and inclinations is (¢2)"/?/(i2)'/* ~ 2. In
this second stage, the growth rate of the protoplanet decreases
as a consequence of the greater relative velocities between the
protoplanet and planetesimals. However, the mass ratio of the
protoplanet and planetesimals still increases with time.

Ida & Makino (1993) also derived, using a semi-analytical
model, the condition for the dominance of the protoplanet-
planetesimal scattering over the planetesimal-planetesimal
scattering:

25y M>Xm, (6)

where M is the mass of the solid embryo, m is the effective plan-
etesimal mass, X is the surface mass density of the planetesimal
disc and Xy, is defined as

M

y=———-,
M 2nalAa

)
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with 2raAa the area of the “heated region”. For a standard solar
nebula, this condition can be translated into a relationship be-
tween M and m which depends on the density profile of the disc,
the semi-major axis a and the planetesimal mass. For the low-
mass nebula model, the transition occurs when M/m ~ 50—100.
This condition was also corroborated by the authors through
N-body simulations. Therefore, the second stage of the proto-
planet growth begins when the mass of the protoplanet is still
much smaller than the total mass of planetesimals in the feeding
zone.

Ida & Makino (1993) estimated the characteristic growth
time (the mass-doubling time) for the protoplanet (assuming a
constant solids surface density):

; _(Llam
gV =AM dr

To estimate (e ), they assumed an equilibrium state where the
enhancement due to viscous stirring is compensated by the
damping due to the nebular gas drag. As a result, in the first stage
where the dominant perturbers are the planetesimals, (%) o
m®15 (note that it does not depend on the mass of the proto-
planet), while in the second stage (e2) o m!'/” M?/3. Hence, in
the first stage Tgrow o M3 so protoplanets grow very fast
and the ratio M/m =~ 50-100 is reached in a negligible time.
In the second stage, the dominant perturber is the protoplanet
and Tgron o< M 173 thus the growth of the protoplanet gradually
becomes slower as its mass increases. This type of time depen-
dence is characteristic of the orderly growth (the presumed final
growth regime for the terrestrial planets). However, the growth
regime in the protoplanet-dominated stage is much shorter than
the orderly growth because protoplanets grow by accretion of
planetesimals and not through collisions of comparable sized
bodies where dynamical friction is absent. The three growth
regimes (the runaway regime, the 2-step regime and the orderly
regime) are schematically illustrated in Fig. 11 of Ida & Makino
(1993).

Kokubo & Ida (1998) performed 3D N-body calculations
to study the post-runaway accretion scenario. Their simulations
start with two protoplanets that grow by planetesimal accretion.
In the first stage of accretion, protoplanets grow in a runaway
fashion. Protoplanetary runaway growth breaks down when M ~
50 m, as predicted by the semi-analytical theory of Ida & Makino
(1993). Protoplanets subsequently grow keeping a typical orbital
separation of 10 Ry, where Ry is the Hill radius of a protoplanet,

M\
RH:(3M*) a 9

with a the distance to the central star. The orbital repulsion is a
consequence of the coupling effect of scattering between large
bodies and dynamical friction from the swarm of planetesimals.
Protoplanets continue their growth keeping their mass ratio close
to unity, but the mass ratio between protoplanets and planetes-
imals continues to increase with time. Thus, protoplanets grow
oligarchically, as no substantial accretion between planetesimals
themselves is found. The mass distribution then becomes bi-
modal: a small number of protoplanetary embryos and a large
number of small planetesimals shape the protoplanetary disc.
Kokubo & Ida (1998) coined this growth regime “oligarchic
growth”, “in the sense that not only one but several protoplanets
dominate the planetesimal system”.

Kokubo & Ida (2000) investigated, through 3D N-body sim-
ulations, the growth from planetesimals to protoplanets includ-
ing the effect of the nebular gas drag. They confirmed the exis-
tence of an initial runaway phase in protoplanetary growth and

-1
) oc M~13¢e2). (8)
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a second stage of oligarchic growth of protoplanets, in the same
sense as in Kokubo & Ida (1998). Also, when analysing the evo-
lution of the RMS eccentricity and inclination of the planetes-
imal system during the oligarchic growth stage they found that
their results agree with those predicted by the semi-analytical
theory of Ida & Makino (1993) for their second stage.

2.2.2. The growth of the core

In the present version of the code we have introduced a time-
dependent planetesimal accretion rate. In this kind of calculation
most authors (Pollack et al. 1996; Hubickyj et al. 2005; Alibert
et al. 2005) usually prescribe that obtained by Greenzweig &
Lissauer (1992) which assumes a rapid growth regime for the
core. Instead, we adopt that corresponding to the oligarchic
growth of Ida & Makino (1993); a slower accretion rate that still
has not been explored with a self-consistent code for giant planet
formation.

The condition for the dominance of the oligarchic growth
over the (previous) runaway growth of a protoplanet, M/m =
50—-100, was derived semi-analytically by Ida & Makino (1993).
In all the cases of interest for this study, the cross-over mass is
very low — i.e. some orders of magnitude below the Earth mass
(Thommes et al. 2003). Due to the initial runaway regime, the
cross-over mass is reached in a negligible time and thus, the
formation time of a giant planet’s core is almost entirely regu-
lated by the oligarchic growth. For this reason, we prescribe the
oligarchic growth for the core since the very beginning of our
simulations.

In the dispersion-dominated regime, a solid embryo growth
rate is well described by the particle-in-a-box approximation
(Safranov 1969),

dm, .,

dr = FﬂﬂReﬂf Urel,
where M. is the mass of the solid protoplanet (in our case, the
core of the giant planet), / is the planetesimals’ disc scale height,
R.g is the effective capture radius and F is a factor introduced to
compensate for the underestimation of the accretion rate by a
two-body algorithm when considering the velocity dispersion of
a population of planetesimals modelled by a single eccentricity
and inclination equal to the RMS values. F is estimated to be ~3
(Greenzweig & Lissauer 1992).

Due to gravitational focusing, the effective capture radius of
a protoplanet, R.g, is larger than its geometrical radius

2
R, :Rg(u(@) ]
Urel

with R, the geometrical radius of the solid embryo, ve. the es-
cape velocity from its surface and v the relative velocity be-
tween the protoplanet and planetesimals,

Vel = Ve2 +i2aQy,

where, hereafter, e = <€%1>1/ 2 (i = (iﬁ)l/ 2 ) is planetesimals
RMS eccentricity (inclination) with respect to the disc (e, i < 1)
and Q is the Keplerian angular velocity. We apply the approx-
imations i ~ e¢/2 and h =~ ai. Following Thommes et al. (2003),
we adopt for e the equilibrium expression that is deduced for the
case when gravitational perturbations due to the protoplanet are
balanced by dissipation due to gas drag,

(10)

Y

12)

Ve 1.7m1/'5M'/3p3{15
B'/SC})/S,DI/SM},Ba'/S ’

13)
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where M is the protoplanet mass (here we assume M to be the
total mass of the proto-giant planet, meaning the core mass plus
the envelope mass), p,, is the planetesimal bulk density, p is the
gas volume density of the protoplanetary disc, Cp is the drag co-
efficient (dimensionless and of the order of 1), M, is the mass of
the central star and 3 is the width of the “heated region” in units
of the Hill radius (considering that potentially other embryos are
growing as well, 8 is of the order of 10). For calculations that do
not assume equilibrium values for the eccentricity and the incli-
nation, we refer the reader to Chambers (2006). His results show
that using equilibrium values for e and i is an acceptable approx-
imation when considering embryos of m X 1072 M, consistent
with the initial core mass of all our simulations (see Sect. 3).

However, when the solid embryo is massive enough to grav-
itationally bind gas from the surrounding nebula, the presence
of this envelope should be considered when calculating the ef-
fective capture radius, R.q. The gaseous envelope modifies the
trajectory of incoming planetesimals, as they are affected by the
gas drag that enlarges the capture radius of the protoplanet. In
addition to the gravitational focusing, a “viscous focusing” due
to gas drag should be considered.

The effective radius R.g, in the form stated in Eq. (11) dom-
inates when the mass of bound gas is negligible. But when the
embryo acquires enough gas to form a thin atmosphere, its effec-
tive radius becomes larger and it separates from that calculated
previously.

To calculate the effective radius of the protoplanet in the
presence of gas around the solid embryo we take into account
the action of gravity and gas drag on the incoming planetesimals.
Consider one planetesimal entering the protoplanet atmosphere
with a velocity v (Eq. (12)). Its equation of motion results from
the action of gravity

GM,m
2

fo=-

together with the action of gas drag. In Eq. (14), r is the radial
coordinate from the centre of the protoplanet and M, is the mass
contained within r. For the gas drag force acting on a spherical
body of radius r,, travelling with velocity v, we adopt the Stokes
law

7, (14)

I%

fo = —%CDnr,ipguz b, (15)
with p, the envelope density and Cp = 1 (Adachi et al. 1976).
Starting at the external radius of the protoplanet (see Sect. 2.4,
Eq. (27) for its definition), numerical integrations of the equation
of motion are performed with an adaptive Runge Kutta 4 routine
(Press et al. 1992). The initial impact parameter considered for
the integration of the trajectory is the effective radius in the ab-
sence of gas (Eq. (11), hereafter R’ ;). Note that this is the lowest
possible effective radius of the protoplanet. We calculated the
trajectory of the planetesimal until it completes one close orbit
inside the Hill sphere of the protoplanet (so it is always gravita-
tionally dominated by the protoplanet). At this point, the plan-
etesimal is considered captured and will definitely be accreted
after a certain time. This procedure is repeated for increasing im-
pact parameters (the relative difference between two consecutive
trial impact parameters being 5 x 107#) until the resulting orbit
is no longer inside the Hill sphere. In other words, planetesimals
are considered to be captured when the energy lost by gas drag
allows them to complete one close orbit around the core and this
is completely inside the protoplanet. The largest impact parame-
ter for which this condition is fulfilled is adopted as the effective
radius for that model. The solids accretion rate is still Eq. (10),
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Fig. 1. Comparison between the protoplanet effective radius for plan-
etesimal capture. In solid line, R’ is calculated using Eq. (11) and in
dashed-dotted line R is calculated including the gas drag of the atmo-
sphere. These results were obtained with a full evolutionary numerical
simulation. The protoplanetary disc surface density corresponds to a
6 MMSN. The protoplanet is located at 5.2 AU and the radius of in-
coming planetesimals is 100 km.

using this new definition for R.g. The mass of accreted planetes-
imals is added to the mass of the core. It is worth mentioning
that according to Inaba & Ikoma (2003), a detailed calculation
of planetesimal ablation does not have a significant influence on
the estimation of Reg.

Note that our criterion for the capture of planetesimals and
the determination of R.g is different to that employed by Pollack
et al. (1996) where R.¢ is taken as the periapsis altitude of the
outermost bound orbit.

We performed a full evolutionary calculation of the forma-
tion of a giant planet in circular orbit around the Sun, with
a = 5.2 AU, and immersed in a disc for which solids and gas
densities are increased by a factor of 6 with respect to the MMSN
(see Sect. 3.2). The effect of gas drag on the protoplanet effective
radius is very important, as seen in Fig. 1. The effective radius
calculated including the gas drag separates from the effective ra-

%

dius calculated according to Eq. (11), R.;, when the elapsed

time is ¢ ~ 4 My and the radius of the core is R. ~ 10° cm. This
corresponds to an envelope mass of ~5 x 10™* Mg, and a core
mass of ~2 Mg. Note that by the end of the formation process,
R is more than 10 times larger than R;‘ﬁ. Moreover, it enters
quadratically in the core accretion rate (Eq. (10)), so it will im-
pact on the protoplanet formation timescale and on the final core
mass (see Sect. 3).

The core growth rate (Eq. (10)) depends also on the surface
mass density of planetesimals, Z, a quantity that is neither con-
stant in time nor in space. X is a function of the distance to the
central star (see Sect. 2.1) and also depends on the disc evolu-
tion. In this paper we consider only one effect for the time de-
pendence of X: the accretion by the protoplanet. There are other
important effects to be taken into account for a more realistic
calculation of the planetesimal accretion rate, for example, plan-
etesimal migration in the protoplanetary disc due to the nebu-
lar gas drag (Thommes et al. 2003) and planetary perturbations,
for example, planetesimal ejection away from the feeding zone
of the protoplanet (Alibert et al. 2005). However, this paper is
mainly focused on the coupling of an oligarchic growth regime
for the core with a full evolutionary calculation of the formation
of a giant planet, so in this first exploration we shall neglect other
effects that may contribute to the time evolution of X.
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When considering the time variation of X we assume that the
growing protoplanet is able to capture planetesimals only from
its feeding zone, defined as an annulus of 4 Hill radii (Eq. (9))
at either side of its orbit. The surface density inside the feeding
zone at a certain time ¢ is considered to be uniform, changing
only due to the accretion by the protoplanet

M.(1)
T aczmt(t) - aizm(t))’

where ajn (), aoy(?) are the inner and outer boundaries of the
feeding zone and (X) is the average of the initial surface den-
sity in that region. Adopting this expression for X tacitly implies
that the accretion process is slow enough to guarantee a uniform
distribution of planetesimals inside the feeding zone.

L=E)®=E)- (16)

2.3. Interaction between incoming planetesimals
and the protoplanetary envelope

On their trajectory to the core, accreted planetesimals interact
with the gaseous envelope of the protoplanet exchanging energy.
In this study, we implemented a simple model to take into ac-
count this effect (for more detailed models see Podolak et al.
1988; Pollack et al. 1996; Alibert et al. 2005). To simplify the
situation, we assume planetesimals approaching the protoplanet
as coming from infinity and entering the envelope with velocity
vrel (Eq. (12)), describing afterwards a straight trajectory to the
core. This may seem to contradict the fact that we calculate the
orbits of planetesimals to define R.g, but as mentioned earlier we
stop orbit calculation when planetesimals complete the first rev-
olution inside the Hill sphere. In the future we will incorporate
a complete calculation of the trajectories to the core, together
with a self-consistent deposition of planetesimal energy in the
gaseous layers of the envelope.

In our simple model of a straight trajectory to the core, the
energy of one incoming planetesimal of mass m at the top of the
atmosphere is

E = %m vrze,.
Gas drag and gravity acceleration are considered here as the two
main responsible forces for changing the energy of planetesimals
throughout the envelope. The drag force acting on a spherical
planetesimal of radius r,, and moving with velocity v is given
by Eq. (15). The gravitational force is calculated as usual with
Eq. (14).

Both forces act simultaneously and modify the planetesimal
velocity. The total force acting on a planetesimal is

dv |

A7)

f=fD+fG=—md—r (18)
t

and

dv dv

- _, = 1
a~ar (19
then

do _CDﬂr,%lpgv L GM: 20)

dr rrv
The kinetic energy lost by a planetesimal due to gas drag Ey ,, is
transformed into heat, gained by the envelope’s shells,

dE dEx, 1. 5,
—=--—__C :
dr dr 2 PMmpe?

2m

21)
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These equations correspond to the energy exchange of one plan-
etesimal with the surrounding gas. When considering all incom-
ing planetesimals per unit of time, M., and transforming the dif-
ferential equations into difference equations, the total variation
of energy AE; of the envelope’s shell i in the time interval At is

1 M,
AE; = Cp rrh pe—- v} Ar; At. (22)
2 m
where v; (the velocity of planetesimals when entering an enve-
lope’s shell i) is obtained from a discretisation of Eq. (20),

GM,

2
CDﬂ-rmpg Ui-1 Ti-1/2

Arii. (23)

Ui = V-1 + |~

2m T Vi
Finally, when planetesimals reach the core, all their remaining
kinetic energy is deposited in the adjacent gas shell.

2.4. The gaseous envelope

The general procedure employed in this study to numerically
solve the formation of a giant planet was introduced in a pre-
vious paper (Benvenuto & Brunini 2005). In the above sections
we mentioned some of the main improvements introduced to the
model presented in that work. For the sake of completeness, we
summarise here the fundamental ideas concerning the solution of
the envelope’s structure. The full differential equations of giant
planet formation are solved with an adaptation of a Henyey-type
code. Radiative and convective transport are considered, em-
ploying the Schwarzshild criterion for the onset of convection.
The adiabatic gradient is adopted for the temperature gradient in
the latter case.

The boundary conditions remain the same. As inner bound-
ary conditions, we consider the core density to be constant,
Pe =3 g cm™3. The mass of the core at time ¢ is calculated as

4
M, = = mp. RX(1).

3 (24
The luminosity on the surface of the core is
L(M.) =0, (25)
and the velocity is
M) = 26)

For the outer boundary conditions, the planetary radius is defined
as

R = min[Rycc, Rul, (27)
where the accretion radius, Ry, is given by

GM
Racc = C—Z’ (28)

¢ being the sound velocity. Ry is the Hill radius (Eq. (9)). The
external boundary conditions for the temperature and density of
the envelope are those corresponding to the nebular gas, T and p
(see Sect. 2.1). For further details on this aspect, we refer the
reader to Benvenuto & Brunini (2005).

Regarding the equation of state (EOS), we employ results
presented in Saumon et al. (1995). For the grain opacities, we
use the tables from Pollack et al. (1985). For temperatures above
10> K we consider Alexander & Ferguson (1994) molecular
opacities which are available up to 7 < 10* K and for higher
temperatures we consider opacities by Rogers & Iglesias (1992).
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Fig. 2. Comparison case. We plot the mass evolution of the core (solid
line), of the envelope (dash-dotted line) and of the total mass (dashed
line) of the protoplanet. The input parameters of this run are the same as
those of case J3 of Pollack et al. (1996). This figure should be compared
to Fig. 2b of the cited article. See the text for details.

3. Results
3.1. Comparison with previous studies

To our knowledge, no self-consistent calculation of giant planet
formation with a core growing according to the oligarchic model
has been performed to date. To show the impact of the core ac-
cretion rate on the whole formation of a planet we performed
a simulation to be compared with previous results obtained by
authors adopting another core accretion model.

For comparison we selected one of the simulations per-
formed by Pollack et al. (1996), their case J3 for the formation
of a Jupiter-like object. These authors adopted for the growth of
the core the model of Lissauer (1987), which assumes a more
rapid growth regime than the model of Ida & Makino (1993)
adopted here. For this run, the protoplanetary disc at 5.2 AU and
the accreted planetesimals are characterised as follows:

initial solids surface density X = 15 g cm~2,

nebula volume density p = 5 x 107 g ecm ™,
nebula temperature 7 = 150 K,
planetesimal bulk density p,, = 1.39 g cm~3,

planetesimal radius r,, = 100 km.

The initial mass of the core, M., is 0.1 Mg and the core density,
Pe, 1832 ¢ cm™3.

The resulting core and envelope mass evolution of our run
is depicted in Fig. 2, which should be compared with Fig. 2b of
Pollack et al. (1996). We use the same mass range in the Y axis
to favour the comparison, although the run was completed suc-
cessfully to the end, that is, until the total mass of the planet,
M, is that of Jupiter (318 Mg). From Fig. 2 it can be seen that
in our calculation it takes 19 My for the mass of the envelope
to equal the mass of the core, while in Pollack et al. (1996) the
cross-over point (M. = Mcyy) is reached in only 1.51 My. As
is immediately obvious, the time difference between both cal-
culations is of approximately one order of magnitude. This is a
significant difference if we keep in mind that the estimated life-
time of the solar nebula is less than 10 My. However, it is worth
pointing out that the cross-over mass in both simulations is al-
most the same (~29 Mg). For the sake of completeness, we men-
tion that the whole formation time is 20.6 My and the final mass
of the core is 42 Mg. From the comparison of both figures, it can
also be seen that we do not find three phases in the formation
of the planet as Pollack et al. (1996) found in their simulations.
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Fig. 3. For the same comparison case as in Fig. 2, solid (dashed-dotted)
line shows the time evolution of the logarithm of the core (envelope)
growth rate.

The slow growth of the core guarantees a smooth variation of the
slope of the M, curve. No different growth regimes in the mass of
the core or in the mass of the envelope can be distinguished be-
fore the runaway growth of the envelope. Moreover, in Fig. 3 we
show in a logarithmic scale, the solids and the gas accretion rate.
Pollack et al. (1996) obtained a different behaviour of the accre-
tion rates which allowed them to define a short phase 1 in the
growth of the protoplanet which ends when dM./dt = dM.,,/dt,
and a longer phase 2 which ends when M. = M,,,. Phase 2
is characterised by a constant proportionality between dM./d¢
and dM.,y/dt. Phase 3 corresponds to the usual runaway growth
of the envelope. From Fig. 3 we can see that a distinction be-
tween phase 1 and a phase 2 cannot be inferred from our sim-
ulation. The time derivative of the mass of the envelope is a
monotonously increasing function, with no flat slope after it be-
comes larger than the core growth rate.

Our physical model is in essence the same as that of Pollack
et al. (1996), except for the selection of the core accretion model
and the treatment of the interaction between incoming planetesi-
mals and the gaseous envelope of the protoplanet. Regarding the
latter, as explained in Sect. 2.3, we consider a simple model for
the energy deposition, while Pollack et al. (1996) developed a
more complex model where the complete trajectories to the core
of accreted planetesimals are calculated and planetesimal abla-
tion is also taken into account. However, this can not be the main
cause of such an important difference between the two formation
timescales. Although this effect may be important in determin-
ing the internal structure of the protoplanet and may also modify
the formation timescale, for this to happen a significant amount
of gas bound to the core is needed. In the present simulation,
it takes 10 My to form a core of 10 Mg, and the mass of the
envelope at that stage is only 0.1 Mg. Hence, the main cause
of the significant discrepancies between the timescales, must be
the growth model for the core. We adopt an oligarchic growth for
the core (with an enhanced effective radius due to the gas drag
of the envelope), while Pollack et al. (1996) prescribed the more
rapid accretion model of Lissauer (1987), also modified by the
enhancement caused by the gas drag. According to their Eq. (1),
the core accretion rate can be written as:

dM
o TR*IQF, (29)

where R is the effective radius, Q is the Keplerian angular veloc-
ity and Fy is the gravitational enhancement factor. Fy depends
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on the RMS values of the reduced eccentricities and inclinations,
and on the reduced effective radius,

. a R
ih,om = —1 d.

a
e m= ——e =—
Ry Ry

Ry
They calculate the numerical values of F'g using the formulae ob-
tained by Greenzweig & Lissauer (1992). Their model assumes
that planetesimals’ inclinations depend only on planetesimal-
planetesimal interactions and adopt for iy, ,, the formula:

_ Ue,m
V3QRy

where ve_,, is the escape velocity from the surface of a planetes-
imal. Clearly, the inclination i, = i, ,, Ruy/a remains constant
during the entire calculation while iy, ,, decreases with time. On
the other hand, they assume that eccentricities are controlled by
both planetesimals and protoplanet stirring, and prescribe for the
reduced eccentricity the equation

In, m (30)

€29

This means that if ey, ,, = 2ip, ,, the protoplanet is growing ac-
cording to the runaway regime, as e and i would be indepen-
dent of the mass of the protoplanet, while if ep ,, = 2 the ec-
centricity of planetesimals would be affected by the presence of
the protoplanet, this condition corresponding to the protoplanet-
planetesimal scattering in the shear-dominated regime. The
numerical simulations of Ida & Makino (1993) showed that
the protoplanet-planetesimal scattering in the shear-dominated
regime lasts for only a few thousand years, after which plan-
etesimals are strongly perturbed by the protoplanet, and the
post-runaway regime can then be considered as a dispersion-
dominated regime. In the dispersion-dominated regime eccen-
tricities and inclinations satisfy that ey, ,,,/in, m =~ 2 and ey, > 2.
Hence, in a model where the protoplanet-planetesimal scattering
is in the shear-dominated regime, eccentricities and inclinations
of planetesimals in the vicinity of the protoplanet remain low.
This leads to an accretion scenario which is much faster than
that corresponding to the oligarchic regime.

To show the difference between eccentricities and inclina-
tions in both models throughout the formation of the planet, we
included in our simulation of the case J3, the calculation of i, ,,
and ey, ,, according to Eqgs. (30) and (31). The ratio of the eccen-
tricity and inclination between the two models is shown in Fig. 4.
We chose the X axis to be the Hill radius of the protoplanet, as
it is completely independent of time and the comparison is then
straightforward. For this case, the initial value of i, ,, is lower
than 1 and, as it is a decreasing function of the mass of the pro-
toplanet, ey, ,, always equals 2. Consequently, our eccentricities
are larger than those in Pollack et al. (1996) by a factor of 4, as
can be seen from Fig. 4. On the other hand, our inclinations are
much higher (their inclination is constant throughout the whole
formation of the planet, i, ~ 0.0039), which impacts not only in
the relative velocities but also in the scale height of the planetes-
imal disc which is inversely proportional to the core accretion
rate. As a consequence, due to our larger eccentricities and in-
clinations, we obtain a much lower accretion rate and a longer
formation timescale.

Pollack et al. (1996) adopt for the definition of the bound-
aries of the feeding zone that the radial distance on either side

en, m = max2ip, m,2).

of the orbit is given by Aa = /12 + e}z1 nRu. According to our

simulation, ey, ,, is always equal to 2, which leads to Aa = 4Ry,
the same value we adopted in our calculations.
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Fig. 4. The impact of the selected model for the growth of the core. The
solid line shows the ratio of eccentricities e/e,, where e is calculated
according to Eq. (13) and e, according to the model adopted by Pollack
et al. (1996). The dashed-dotted line plots the ratio of inclinations #/i..
While in our model i depends on e (i = e/2), in Pollack et al.(1996) i, re-
mains constant during the entire simulation. For the X axis we selected
the Hill radius in order to get rid of the different formation timescales
of both simulations.

3.2. Resuilts of full calculations of giant planet formation
with an oligarchic growth for the core

All the simulations presented in this section were started with
an embryo of 0.005 My, revolving in a circular orbit around the
Sun. The semi-major axis of the orbit is that corresponding to
Jupiter, 5.2 AU. The mass of the seed was chosen to guarantee
that the embryo is undergoing an oligarchic growth and that it is
also able to bind a tiny atmosphere, the latter in order to allow the
code to converge. The density of the core will be held constant
during the entire formation process, peore = 3 g cm™>. The dis-
crepancy between core density and planetesimals bulk density
(om = 1.5 gcm™) is due to the progressive high pressure the
core is subject to. We arbitrarily stopped calculations when the
total mass of the protoplanet was that of Jupiter. This assumption
tacitly implies that the nebula can always provide the necessary
amount of gas for the formation of the planet.

The first set of simulations is intended to show the conse-
quences of the envelope’s drag on the oligarchic growth of the
core (Eq. (10)). To this end, we performed several runs for vari-
ous protoplanetary disc surface densities, including and exclud-
ing the effect of the gas drag in the calculation of R.s. The plan-
etesimal radius is assumed to be constant, fixed for these exam-
ples at 100 km (no size distribution or collisions between plan-
etesimals were taken into account). As no planetesimal migra-
tion, planetesimal ejection by the protoplanet, perturbations by
other embryos, etc., were considered, the variation of the solid
surface density of the feeding zone is only due to planet accre-
tion. Since no mechanisms for the dissipation of the gaseous
component of the nebula were modelled, the variation of the vol-
ume gas density of the feeding zone is due only to the formation
of the envelope. We note that this is an idealised situation where
the protoplanet probably has the largest amount of available ma-
terial to feed itself.

We found that, in spite of the favourable conditions for mass
accretion of our model, for protoplanetary discs with densities
lower than that of a 6 MMSN, the formation process could not
be completed according to the timescales imposed by the obser-
vations of circumstellar discs (lower than 107 yr) in either of the
cases considered for the calculation of R.s. The results for a disc
of 6 MMSN are depicted in Fig. 5. The upper panel (Fig. 5a)
shows the evolution of the core and envelope mass when
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Fig.5. For a 6 MMSN protoplanetary disc, panel a) shows the core
(solid line) and envelope (dashed-dotted line) mass evolution of a
Jupiter-like forming protoplanet at 5.2 AU, considering that the core
grows according to the oligarchic growth regime, with R} calculated
with Eq. (11). Panel b) shows the same simulation but including the
gas drag effect of the protoplanetary atmosphere in the calculation of
R.q. Note that for a clear visualisation the Y axis changes from a lin-
ear scale to a logarithmic scale. Panel a) (b)) is in a linear scale up to
40 Mg (100 My), afterwards the scale is logarithmic. For both runs,
planetesimal radius was set equal to 100 km.

ignoring for the protoplanet capture effective radius the pres-
ence of the atmosphere (R; calculated according to Eq. (11)).
The complete formation of a Jupiter-mass object takes a bit over
17 My and the final mass of the core is ~28 Mg (note that, in our
model, all accreted solids are deposited onto the core). However,
when including the atmospheric gas drag, the timescale turns out
to be 12 My (still over the limiting 10 My) while the mass of the
core increases to 60 Mg (see Fig. 5b). This means that, in this
case, the effect of the gas drag of the atmosphere reduces the
formation time in about 30%, but also affects the final mass of
the core, which is increased a factor of 2.

Although a core of ~10 Mg (currently an acceptable value
for Jupiter’s core mass, Saumon & Guillot 2004) is formed in
~6.5 My in the second simulation, the runaway collapse of the
gaseous envelope occurs ~5 My later. As seen from Eq. (10),
the solids accretion rate is directly proportional to the solids
surface density and the fact that the feeding zone is far from
being depleted when this mass is achieved (see Fig. 6), allows
the protoplanet continue the accretion of solids. In fact, as seen
from Fig. 7, the peak of the core accretion rate takes place for
t ~ 8 My, when the mass of the core is approximately 20 M.
This large number of incoming planetesimals contribute to the
gas pressure supporting the envelope via their gravitational en-
ergy, and thus prevent faster accretion of gas from the nebula and
as such permit the formation of a massive core.
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Fig. 6. This panel depicts the evolution of the solids surface density for
the simulation that includes the atmospheric gas drag (corresponding to
Fig. 5b). A core of ~10 M is achieved for t ~ 6.5 My, when X is still
very high.
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Fig.7. This figure shows the evolution of the core accretion rate for the
simulation that includes atmospheric gas drag. Note that the accretion
rate is still an increasing function when the mass of the core reaches
10 Mg (corresponding to ~6.5 My; see also Fig. 5b), preventing the
rapid accretion of the envelope mass.

Table 2. Comparison of formation times and core masses for several
disc densities. Planetesimal radius is 100 km.

Disc density Without gas drag With gas drag
[MMSN] Formation Core Formation Core
time [My] mass time [My] mass
[Ms] [Mo]
6 17 28 12 60
7 14 32 9 70
8 11 36 7 81
9 10 40 6 91
10 8 43 5 100

The same behaviour is found when increasing the surface
density of the disc. In Table 2 we show, in round numbers, the
formation times and the final masses of protoplanetary cores for
discs that range from 6 MMSN to 10 MMSN and planetesimals
having a radius of 100 km. As expected, the higher the density
of the disc, the shorter the formation time but the larger the final
core’s mass (see also Pollack et al. 1996). The timescale reduc-
tion, when the gas drag from the atmosphere is included, ranges
from ~30% for 6 MMSN to ~40% for 10 MMSN. The maximum
timescale reduction for these cases is then less than a factor of 2.
The mass of the core, on the other hand, monotonously increases
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Table 3. Comparison of formation times and core masses for several
disc densities with a planetesimal radius of 10 km.

Disc density Without gas drag With gas drag
[MMSN] Formation  Core Formation Core
time [My] mass time [My] mass
[Ms] [Ms]
6 9 34 5.6 69
7 7 40 4 80
8 6 45 3 92
9 4.8 50 2.2 104
10 4 55 1.75 115

fractionally, from a factor of ~2.15 for 6 MMSN to a factor of
~2.35 for 10 MMSN. Qualitatively, all curves look similar to
that shown in Fig. 5 and it is not worth showing them here.

When the same comparative simulations are made for plan-
etesimals having a radius of 10 km (this means, simulations that
consider both cases for the effective radius of the protoplanet,
R and R.q), the timescale reduction ranges from ~38% for
6 MMSN to ~56% for 10 MMSN, and again we find that the
mass of the core is doubled (see Table 3). For planetesimals
of this size, and according to the results presented in Table 3,
one could speculate about reducing the density of the disc (to
less than that corresponding to 6 MMSN) and still finding a for-
mation timescale below 107 yr (when considering the enhanced
capture radius by gas drag). However, to present our results
clearly, we find it more relevant to compare the several sets of
simulations for the same nebula conditions.

For the sake of completeness, Fig. 8 shows the evolution of
the core mass and the envelope mass for a 6 MMSN disc where
the planetesimal radius is 10 km. When gas drag from the enve-
lope of the protoplanet is ignored, the formation time is ~9 My
and the core mass is ~34 Mg. However, when this effect is in-
cluded in the calculations, the total formation time is reduced to
~6 My, with a final super-massive core of 69 Mg.

Although our core masses are in all cases completely out
of range for present models of Jupiter total mass of solids, Mz
(recent estimations are M, S 11 Mg and 1 Mg S M. + My <
39 Mg, Saumon & Guillot 2004), the main objective of this work
is not directed to fit our results to these values, but on stressing
the results obtained when adopting the oligarchic growth for the
core. From our calculations it is clear that including the enhance-
ment of the accretion cross-section due to gas drag, helps to
reduce the formation timescale when considering an oligarchic
model, although surface densities higher than that of the MMSN
are still needed. The main drawback of these massive discs is
that they lead to the formation of super-massive cores. However,
we have to keep in mind that no mechanisms of planetesimal re-
moval from the feeding zone of the protoplanet are taken into
account, except for the depletion due to planetesimal accretion
onto the protoplanet.

Thommes et al. (2003) calculated analytically and numeri-
cally the evolution of solid protoplanetary masses growing oli-
garchical for a wide range of semi-major axes and for a proto-
planetary disc of 1 MMSN and 10 MMSN (their solids surface
density for the MMSN is slightly lower than ours). For a
10 MMSN and considering planetesimals having a radius of
10 km, they obtain a protoplanet of ~60 M, a result we were
also able to reproduce in the absence of gas accretion. However,
when they include in their simulations the planetesimal migra-
tion in the protoplanetary disc due to nebular gas drag, the re-
sulting protoplanet is reduced to ~10 Mg. Planetesimal migra-
tion due to gas drag is a relevant ingredient which should be
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Fig. 8. For a protoplanetary disc of 6 MMSN and planetesimals having a
radius of 10 km, upper panel a) shows the evolution of the protoplanet
mass (the core mass with the solid line, the envelope mass with the
dashed-dotted line) when no atmospheric gas drag is considered. The
lower panel b) illustrates the same process but when R.q is calculated
including the gas drag force acting on incoming planetesimals. Again,
the Y axis is split in two different scales: first we adopt a linear scale
and then a logarithmic one. The same range as in Fig. 5 is adopted.

considered in future calculations for an accurate estimation of
the mass of the core and of the formation timescale. Another
important effect that should be taken into account in future cal-
culations is the ejection of planetesimals out of the feeding zone.
This could probably also help in solving the problem of having
a Jupiter-like planet with such large core masses. Since ejection
occurs mainly for large mass planets, this would not necessarily
slow down the accretion of planetesimals at the beginning, and
may not lead to a too long formation time of the planet.

The previous paragraphs focus on the consequences of the
enhancement of the effective capture cross-section due to the
envelope’s gas drag. We now analyse the importance of plan-
etesimal size. For a clear visualisation we summarise in Table 4
the earlier calculations with the enhanced effective radius for
planetesimals having radii of 10 and 100 km. Planetesimal mass
appears in Eq. (13), which determines the relative velocity of
planetesimals with respect to the protoplanet through Eq. (12).
Smaller planetesimals experience stronger damping of random
velocities due to nebular gas and form a thinner disc (i = %e
and & ~ ai) which in turn favours accretion (Thommes et al.
2003). Moreover, smaller planetesimals suffer from a stronger
deceleration due to atmospheric gas drag, increasing the impact
parameter. Both effects combined favour the formation process,
reducing the formation timescale.
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Table 4. Comparison of formation times and core masses for several
disc densities, and for two different planetesimal sizes: 100 and 10 km.
All cases were calculated including atmospheric gas drag.

Disc Planetesimal Planetesimal
density  radius: 100 km radius: 10 km
[MMSN] Formation Core Formation Core
time mass time mass
[My] [Ms]  [My] [Ms]
6 12 60 5.6 69
7 9 70 4 80
8 7 81 3 92
9 6 91 2.2 104
10 5 100 1.75 115

If we analyse and compare results without including the gas
drag of the envelope for a fixed nebula density (first and second
Cols. of Tables 2 and 3), we find that for planetesimal radius
of 10 km the whole formation process is reduced in an approxi-
mately constant factor of 2 when compared to planetesimals hav-
ing a radius of 100 km, while the core mass is increased by 25%.
This value is independent of the protoplanetary disc conditions,
at least in the cases considered here. When the gas drag is in-
cluded in the calculations this behaviour changes (see Table 4).
Results show that the formation time reduces from a factor of
~2 for a protoplanetary disc of 6 MMSN to a factor of ~3 in the
case of 10 MMSN, when comparing the runs for the same pro-
toplanetary disc conditions but for different planetesimal size.
The factor of the timescale reduction depends then, on the sur-
face density of the protoplanetary disc. The mass of the core is
less affected than in the previous case, resulting for planetesi-
mals having a radius of 10 km, as being on average, 15% more
massive than for planetesimal radius of 100 km. These results
show that when including the gas drag of the envelope, the re-
duction factor in the formation time also depends on the surface
density of the disc. Note that the fractional decrease of the whole
formation time is greater than the fractional increase of the core
mass.

In summary, this section focused on the study of the forma-
tion of a giant planet with a full evolutionary code, assuming
an oligarchic growth regime for the core. We first studied the
enhancement of the effective capture radius due to the presence
of the gaseous envelope. The atmospheric gas drag enlarges the
capture cross-section, causing a reduction in the formation time
but also a significant increment in the mass of the core. We also
studied the impact of the size of accreted planetesimals in our
model. We found that the whole formation process is acceler-
ated when considering smaller planetesimals and that the reduc-
tion factor depends on the surface density of the feeding zone.
However, no substantial change in the final mass of the core was
identified.

4. Discussion and summary

In this paper we examined the formation of a Jupiter-like object.
Motivated by the work of Thommes et al. (2003), we selected an
oligarchic growth regime for the core as the planetesimal accre-
tion rate. The numerical simulations were made with the code
presented in a previous paper by Benvenuto & Brunini (2005),
which was updated in this study (see Sect. 2). This code was
developed for a self-consistent calculation of giant planet for-
mation, so the growth of the core is coupled to the growth of the
envelope. In this sense, the evolution of the envelope’s density
profile is a natural outcome of the code and a relevant quantity
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for an accurate estimation of the enhancement in the protoplanet
capture cross-section of planetesimals (as the drag force depends
on p, see Eq. (15)), which has a direct impact on the growth rate
of the core.

When including a time-dependent planetesimal accretion
rate in these kinds of calculations, most authors prescribe a rapid
one, that in general guarantees the formation of a massive core
in a few hundred thousand years. However, N-body simulations
show that when the embryo is about the mass of the Moon,
or even smaller (Thommes et al. 2003), the growth regime en-
ters the protoplanet-dominated stage. For this reason, we as-
sume from the very beginning of our calculations an oligarchic
growth regime, which seems to be a more realistic approach
to the problem. This accretion rate is considerably slower than
the usually-adopted accretion model of Greenzweig & Lissauer
(1992). Adopting the oligarchic growth model has, as a main
consequence, an increase in the whole formation timescale when
compared to previous calculations which adopt a rapid growth
for the core (see Sect. 3.1). In this sense, it is worth mentioning
that an accurate giant planet formation model with an oligarchic
growth for the core should also include planetesimal migration
due to the nebular gas drag since the assumed lifetime of the
nebula is of the same order of magnitude of the formation pro-
cess itself (Thommes et al. 2003). In the calculations presented
here this effect was not included, as this article aims to analyse
in a first approximation the oligarchic growth regime for a giant
planet in a self-consistent calculation.

To the authors’ knowledge, the oligarchic growth of pro-
toplanets has generally been studied in the absence of an at-
mosphere and no full evolutionary calculations of gaseous gi-
ant planets adopting this growth regime for the core have been
performed in the past. As giant planets have large gaseous en-
velopes, the gas drag effect of the growing atmosphere should
play an important role in the resulting accretion cross-section of
the protoplanet. In order to study the relevance of this effect, we
made a set of simulations for several disc densities to estimate
the consequences of including the gas drag in the calculation
of the effective radius and we compared them to those where
the effective radius is calculated in the absence of gas drag.
According to our simulations, the main effects of the enlarge-
ment of the effective radius when considering the gas drag are a
reduction of about 30% to 55% in the whole formation timescale
(depending on the surface density of the disc and on the plan-
etesimal mass, being stronger for smaller planetesimals) and an
increase in the mass of the core by about a factor of 2 for the
several protoplanetary disc considered here. As we mentioned
before, no planetesimal migration or other protoplanet-disc in-
teractions were considered, so our results should be analysed in
the context of this simple model. However, from the compari-
son of simulations with and without atmospheric gas drag, we
conclude that including the gas drag in the calculation of the ef-
fective cross-section of the protoplanet is absolutely relevant to
the estimation of the formation timescale. The fact that, in asso-
ciation with higher surface densities for the disc, we obtain the
desired shorter timescales but, on the other hand, super-massive
cores should not be a cause for concern. Although the mass of
the core is closely related to the formation timescale (the more
massive the core, the shorter the timescale), Thommes et al.
(2003) showed in their calculations of the formation of proto-
planetary cores, that planetesimal migration strongly affects the
planetesimal population of the feeding zone, being very effec-
tive in depleting it. Including this effect reduces considerably
the final mass of the core, and protoplanetary discs as massive
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as 10 MMSN would probably offer us good fits to the core mass
and the formation timescale simultaneously.

In this paper, we also explored the effect on giant planet for-
mation of planetesimal size variations. For the same set of pro-
toplanetary discs (from 6 to 10 MMSN), we made simulations
for a swarm of planetesimals having a fixed radius of 10 and
100 km. We find that the formation timescale is strongly depen-
dent on planetesimal size: for planetesimal radius of 10 km, the
process occurs a factor of 2 to 3 times faster than for the case of
larger planetesimals. A reduction in the timescale was expected,
since smaller planetesimals have lower relative velocities which
favour accretion and they are much more affected by gas drag.
However, the mass of the core is not very increased.

In a recent paper, Inaba & Ikoma (2003) also explored the
effects of gas drag on the effective radius of a protoplanet for
capturing planetesimals of different sizes. They found that gas
drag largely increases the effective capture radius. While our re-
sults are qualitatively similar to those of Inaba & Ikoma (2003),
we note that we employed a full evolutionary code. In particu-
lar, it is worth discussing the results Inaba & Ikoma (2003) pre-
sented in their Fig. 6. They estimated the time spent in form-
ing a 10 Mg core as a function of planetesimal size, finding
that gas drag drastically decreases the formation timescale: for
planetesimals of, e.g., 10 km (100 km) the timescale is reduced
by a factor of ~6 (~4). These factors would be very helpful
in alleviating the timescale problem of the whole core growth
mechanism. However, the results presented in this paper indicate
that, while there exists a reduction in the time spent in form-
ing a core of 10 Mg, it is much more modest. We find that it
is only slightly dependent on the protoplanetary surface density
and moderately dependent on the planetesimal size. For plan-
etesimals of 10 km the average reduction factor in the formation
timescale of a 10 Mg core is ~1.25 and for planetesimals of
100 km it is ~1.5. It is also worth mentioning that the timescale
involved in forming a 10 Mg core is not really representative of
the complete giant planet formation timescale as shown in this
and previous papers (e.g., Pollack et al. 1996).

The next step for our future calculations is the inclusion of
planetesimal migration due to nebular gas drag and planetesi-
mal ejection out of the feeding zone. This will provide us with a
more accurate quantitative idea of the final core masses and for-
mation timescales in the frame of an oligarchic growth regime
for the core. Also, a size distribution of the accreted planetes-
imals should be considered for a better estimation of the for-
mation timescales. Or, at least, if a unique radius is adopted for
all planetesimals in the swarm, several simulations varying the
radius should be made in order to bracket the formation time.
Finally, we expect to update the opacity tables since opacity
plays a fundamental role in the formation timescale (Podolak
2003; Hubickyj et al. 2005). It would also be interesting to test
with our model, the response of the whole planetary formation
process to grain opacity reduction, which will probably shorten
the timescales involved, as has been already shown by, e.g.,
Pollack et al. (1996) and Hubickyj et al. (2005).
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