165 research outputs found

    Structure function of a damped harmonic oscillator

    Full text link
    Following the Caldeira-Leggett approach to describe dissipative quantum systems the structure function for a harmonic oscillator with Ohmic dissipation is evaluated by an analytic continuation from euclidean to real time. The analytic properties of the Fourier transform of the structure function with respect to the energy transfer (the ``characteristic function'') are studied and utilized. In the one-parameter model of Ohmic dissipation we show explicitly that the broadening of excited states increases with the state number without violating sum rules. Analytic and numerical results suggest that this is a phenomenologically relevant, consistent model to include the coupling of a single (sub-)nuclear particle to unobserved and complex degrees of freedom.Comment: 23 pages, 5 figures, RevTex4, minor changes following referee's comments and by PRC: the definite article in the original title has been droppe

    Diffusion of School-Based Prevention Programs in Two Urban Districts: Adaptations, Rationales, and Suggestions for Change

    Get PDF
    The diffusion of school-based preventive interventions involves the balancing of high-fidelity implementation of empirically-supported programs with flexibility to permit local stakeholders to target the specific needs of their youth. There has been little systematic research that directly seeks to integrate research- and community-driven approaches to diffusion. The present study provides a primarily qualitative investigation of the initial roll-out of two empirically-supported substance and violence prevention programs in two urban school districts that serve a high proportion of low-income, ethnic minority youth. The predominant ethnic group in most of our study schools was Asian American, followed by smaller numbers of Latinos, African Americans, and European Americans. We examined the adaptations made by experienced health teachers as they implemented the programs, the elicitation of suggested adaptations to the curricula from student and teacher stakeholders, and the evaluation of the consistency of these suggested adaptations with the core components of the programs. Data sources include extensive classroom observations of curricula delivery and interviews with students, teachers, and program developers. All health teachers made adaptations, primarily with respect to instructional format, integration of real-life experiences into the curriculum, and supplementation with additional resources; pedagogical and class management issues were cited as the rationale for these changes. Students and teachers were equally likely to propose adaptations that met with the program developers’ approval with respect to program theory and implementation logistics. Tensions between teaching practice and prevention science—as well as implications for future research and practice in school-based prevention—are considered

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Linking Distributive and Procedural Justice to Employee Engagement Through Social Exchange: A Field Study in India

    Get PDF
    Research linking justice perceptions to employee outcomes has referred to social exchange as its central theoretical premise. We tested a conceptual model linking distributive and procedural justice to employee engagement through social exchange mediators, namely, perceived organizational support and psychological contract, among 238 managers and executives from manufacturing and service sector firms in India. Findings suggest that perceived organizational support mediated the relationship between distributive justice and employee engagement, and both perceived organizational support and psychological contract mediated the relationship between procedural justice and employee engagement. Theoretical and practical implications with respect to organizational functions are discussed

    Component efficient solutions in line-graph games with applications

    Get PDF
    Recently, applications of cooperative game theory to economic allocation problems have gained popularity. We investigate a class of cooperative games that generalizes some economic applications with a similar structure. These are the so-called line-graph games being cooperative TU-games in which the players are linearly ordered. Examples of situations that can be modeled like this are sequencing situations and water distribution problems. We define four properties with respect to deleting edges that each selects a unique component efficient solution on the class of line-graph games. We interpret these solutions and properties in terms of dividend distributions, and apply them to economic situations. © 2006 Springer-Verlag

    Insights into Planet Formation from Debris Disks

    Get PDF

    Search for excited leptons in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the final published paper that is available from the link belowResults are presented of a search for compositeness in electrons and muons using a data sample of pp collisions at a center-of-mass energy √s=7 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 5.0 fb−15.0 fb−1. Excited leptons (ℓ⁎) are assumed to be produced via contact interactions in conjunction with a standard model lepton and to decay via ℓ⁎→ℓγ, yielding a final state with two energetic leptons and a photon. The number of events observed in data is consistent with that expected from the standard model. The 95% confidence upper limits for the cross section for the production and decay of excited electrons (muons), with masses ranging from 0.6 to 2 TeV, are 1.48 to 1.24 fb (1.31 to 1.11 fb). Excited leptons with masses below 1.9 TeV are excluded for the case where the contact interaction scale equals the excited lepton mass. The limits on the cross sections are the most stringent ones published to date

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF
    corecore