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Abstract Recently, applications of cooperative game theory to economic alloca-
tion problems have gained popularity. We investigate a class of cooperative games
that generalizes some economic applications with a similar structure. These are
the so-called line-graph games being cooperative TU-games in which the play-
ers are linearly ordered. Examples of situations that can be modeled like this are
sequencing situations and water distribution problems. We define four proper-
ties with respect to deleting edges that each selects a unique component efficient
solution on the class of line-graph games. We interpret these solutions and prop-
erties in terms of dividend distributions, and apply them to economic situations.
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by
cooperation can be described by a cooperative game with transferable utility, or
simply a TU-game, being a pair (N , v), where N = {1, . . . , n} is a finite set of n
players and v : 2N → IR is a characteristic function on N such that v(∅) = 0. In
this paper we assume that N is a fixed set of players, allowing to denote a TU-game
(N , v) shortly by its characteristic function v. For any coalition S ⊆ N , the real
number v(S) is the worth of coalition S, i.e., the members of coalition S can obtain
a total payoff of v(S) by agreeing to cooperate. A payoff vector of an n-person
TU-game is an n-dimensional vector giving a payoff to any player i ∈ N . A point-
valued solution (shortly refered to as solution) is a function f that assigns a single
payoff vector f (v) ∈ IRn to any game v. A solution f is efficient if it for any
game v precisely distributes the worth v(N ) of the grand coalition. An example
of an efficient solution is the famous Shapley value, see Shapley (1953), being the
average of the so-called marginal value vectors.

In standard cooperative game theory it is assumed that any coalition of players
may form. On the other hand, in many situations the collection of possible coali-
tions is restricted by some social, hierarchical, economical, communicational or
technical structure. Examples are games in coalition structure (see, e.g. Aumann
and Drèze 1974; Owen 1977), games with communication structure (see, e.g. My-
erson 1977; Owen 1986; Borm et al. 1994), games with permission structure (see
Gilles et al. 1992; van den Brink and Gilles 1996; van den Brink 1997) and more
general models of games restricted on combinatorial structures (see, e.g. Bilbao
(2000)). In this paper we restrict ourselves to a special type of games with limited
communication structure, called line-graph games, in which the communication
(graph) structure is given by a linear ordering on the set of players. Following
Myerson (1977) and Greenberg and Weber (1986), in such a line-graph game only
consecutive players can communicate with each other.

For the class of line-graph games we define four different properties related to
deleting edges in the graph. The first property is the fairness property introduced
already by Myerson (1977) stating that deleting the edge between two players hurts
(or benefits) both of them equally. The second property is upper equivalence stating
that the payoff of a player does not depend on the presence of downward edges.
The third property is lower equivalence meaning that the payoff of a player does
not depend on the presence of upward edges. Finally, the equal loss property is an
alternative to fairness, but instead of equalizing the change in individual payoffs
for the players on the deleted edge, it states that the total payoff of the players at
both sides of the deleted edge change by the same amount.

Together with component efficiency, each of these four properties uniquely
selects a solution on the class of line-graph games. The first solution is the well-
known Myerson value. The other three solutions are always in the core of the
restricted game if the original game is superadditive. It also follows that each solu-
tion is a so-called Harsanyi solution, see Vasil’ev (1982, 2003) being solutions that
distribute the Harsanyi dividend (Harsanyi 1959) of each coalition S among the
players in S. Finally, these four solutions will be applied to sequencing games,
see, e.g. Curiel (1988) and Curiel et al. (1993, 1994), and the water distribution
problem, see Ambec and Sprumont (2002).
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This paper is organised as follows: section 2 is a preliminary section containing
concepts from cooperative game theory, including the concept of line-graph game.
In section 3 we define the four edge properties for point-valued solutions on the
class of line-graph games and we prove that each of these properties uniquely deter-
mines a component efficient solution on this class. In section 4 we discuss these
four solutions in terms of the distribution of the Harsanyi dividends. In section 5
we discuss the applications mentioned above.

2 Preliminaries

We denote the collection of all TU-games on N (represented by their characteristic
function) by G. A TU-game v is superadditive if v(S ∪ T ) ≥ v(S)+ v(T ) for any
pair of subsets S, T ⊆ N such that S ∩ T = ∅. Further, a TU-game v is convex if
v(S ∪ T )+ v(S ∩ T ) ≥ v(S)+ v(T ) for all S, T ⊆ N . A special class of convex
games are unanimity games. For each nonempty T ⊆ N , the unanimity game uT

is given by uT(S) = 1 if T ⊆ S, and uT(S) = 0 otherwise. It is well-known that
the unanimity games form a basis for G. Denoting the collection of all nonempty
subsets of N by �, it holds that v = ∑

T ∈� �T(v)uT. Since

v(S) =
∑

T ⊆S

�T(v) (1)

the Möbius inversion formula implies that

�T(v) =
∑

S⊆T

(−1)|T |−|S|v(S), T ∈ �.

Following Harsanyi (1959), we call�S(v) the Harsanyi dividend of S in v. Accord-
ing to equation (1), the worth of a coalition S is equal to the dividend of S plus the
sum of the dividends off all its proper subcoalitions. The dividend of a coalition S
thus can be interpreted as the additional contribution of the cooperation among the
players in S, that they did not already realize by cooperating in smaller coalitions.

For a permutation π : N → N , assigning rank number π(i) ∈ N to any player
i ∈ N , we define π i = { j ∈ N |π( j) ≤ π(i)}, i.e., π i is the set of all players
with rank number at most equal to the rank number of i , including i itself. Then
the marginal value vector mπ (v) ∈ IRn of game v and permutation π is given by
mπ

i (v) = v(π i )− v(π i \ {i}), i ∈ N . The game v is convex if and only if the Core
of v is equal to the convex hull of all marginal value vectors (see Shapley 1971;
Ichiishi 1981), where the Core is the set-valued solution assigning to game v the
(possibly empty) set

C(v) =
{

x ∈ IRn

∣
∣
∣
∣
∣

n∑

i=1

xi = v(N ), and
∑

i∈S

xi ≥ v(S), for all S ⊆ N

}

.

One of the most applied point-valued solutions for cooperative TU-games is the
Shapley value, which is applied to economic allocation problems in Graham
et al. (1990), Maniquet (2003) and Tauman and Watanabe (2006). The Shapley
value (Shapley 1953) is the solution ψ that assigns to TU-game v the payoff
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vector ψ(v), being the average of the marginal value vectors over the set � of
all permutations π : N → N , and thus lies in the Core if the game is convex.
Alternatively, the Shapley value can be defined as the solution that in every game
equally distributes the Harsanyi dividends among the players in the corresponding
coalitions, i.e., ψi (v) = ∑

{T ⊆N |i∈T }[�T (v)/|T |] for all i ∈ N , v ∈ G.
Line-graph games are a special subclass of games with communication (graph)

structure. We may assume without loss of generality that the players are ordered
according to the natural ordering from 1 to n. The structure on the set of players
then is given by a line-graph (N , L) with N the set of players and L ⊆ Lc =
{{i, i + 1}|i = 1, . . . , n − 1} the set of edges. If L = Lc then each pair of consec-
utive players is directly connected by an edge. For i, j ∈ N with i ≤ j we denote
by [i, j] the set {i, i + 1, . . . , j − 1, j} ⊆ N of subsequent players. A coalition
S ⊆ N is connected in the graph (N , L) if and only if S = [i, j] for some i, j ∈ N ,
i ≤ j and {k, k + 1} ∈ L for all k ∈ [i, j − 1]. A line-graph L ⊂ Lc consists
of different components that each consists of consecutive linearly ordered players,
where a set of players S is a component if and only if it is connected and S ∪ {i} is
not connected for every i ∈ N \ S.

We shortly denote the game v with line-graph (N , L) as the graph game (v, L)
and the collection of all line-graph games by G × L, where L = {L | L ⊆ Lc}
is the set of all line-graphs on N . Following Myerson (1977) and Greenberg and
Weber (1986), in a graph game a coalition S ⊆ N can only realise its worth
v(S) when S is connected. When S is not connected, the players in S can only
realise the sum of the worths of the components of the subgraph (S, L(S)) with
L(S) = {{i, i + 1} ∈ L | {i, i + 1} ⊆ S}. So, the resulting restricted game induced
by the line-graph game (v, L) is given by

vL(S) =
∑

T ∈CL (S)

v(T ), (2)

where CL(S) is the collection of all components of S. The set S itself is the unique
component of S if and only if S is connected. From Le Breton et al. (1992) it
follows that the restricted game vL of a superadditive cycle-free graph game has
a nonempty Core and thus this holds for all superadditive line-graph games. The
nonemptiness of the Core also follows from Granot and Huberman (1982), who
showed that a permutational convex game has a nonempty core. More precisely, let
u and � be the two permutations on N defined by u(i) = i , i = 1, . . . , n, respec-
tively �(i) = n + 1 − i , i = 1, . . . , n. Then it follows that when v is superadditive,
the restricted game vL satisfies the permutational convexity condition of Granot
and Huberman for the two permutations u and �, from which it follows that the
two marginal value vectors mu(vL) and m�(vL) are in the Core of vL .

3 Solutions for line-graph games

In this section we first give four properties of solutions on the class G × L of
line-graph games. These properties say something about changes in payoffs as a
result of deleting an edge from the line-graph. To state the properties, for L ∈ L
and i = 1, . . . , n − 1, let (N , L(i)) be the graph on N with L(i) = L \ {{i, i + 1}}
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as the set of edges obtained by deleting the edge {i, i + 1} from L (if this edge is
contained in L). Observe that L ∈ L implies that also L(i) ∈ L.

Definition 3.1 1. A solution f onG×L is called fair if for any i = 1, . . . , n−1,v ∈
G and L ∈ L it holds that fi (v, L)− fi (v, L(i)) = fi+1(v, L)− fi+1(v, L(i)).

2. A solution f on G × L is called upper equivalent if for any i = 1, . . . , n − 1,
v ∈ G and L ∈ L it holds that f j (v, L(i)) = f j (v, L), j = 1, . . . , i .

3. A solution f on G × L is called lower equivalent if for any i = 1, . . . , n − 1,
v ∈ G and L ∈ L it holds that f j (v, L(i)) = f j (v, L), j = i + 1, . . . , n.

4. A solution f on G × L is said to have the equal loss property if for any i =
1, . . . , n − 1, v ∈ G and L ∈ L it holds that

∑i
j=1( f j (v, L)− f j (v, L(i))) =

∑n
j=i+1( f j (v, L)− f j (v, L(i))).

The first property is the fairness property introduced already by Myerson (1977)
and states that deleting the edge between i and i +1 hurts (or benefits) both players
i and i + 1 equally. Upper equivalence means that the payoff of a player does not
depend on the presence of downward edges, while lower equivalence means that
the payoff of a player does not depend on the presence of upward edges. The equal
loss property is an alternative to fairness, but instead of equalizing the change in
individual payoffs for the players on the edge that is deleted, it states that the total
payoff of the players at both sides of the deleted edge change by the same amount.
Which property is most appropriate depends on the application that is in mind and
will be discussed in the sections 4 and 5.

The next theorem says that together with component efficiency, each of these
four properties selects a unique solution on the class G × L of line-graph games.
A solution is called component efficient if the sum of payoffs in any component S
in (N , L) exactly equals the worth of that component, i.e.,

∑

i∈K

fi (v, L) = v(K ), for all K ∈ CL(N ). (3)

To state the theorem, let f s , f u , f � and f e be the solutions on G × L defined
by f s(v, L) = ψ(vL), f u(v, L) = mu(vL), f �(v, L) = m�(vL) and f e(v) =
1
2 (m

u(v, L) + m�(v, L)), for all (v, L) ∈ G × L, which respectively assign the
Shapley value of vL (this solution is also known as the Myerson value), the mar-
ginal value vector of vL corresponding to the order u(i) = i , the marginal value
vector corresponding to the order l(i) = n + 1 − i , and the average of these
two vectors. Before stating the theorem, we first give the next lemma. Its proof is
straightforward and therefore omitted.

Lemma 3.2 For some permutation π , let f : G × L → IRn be the solution on the
class G × L given by f (v, L) = mπ (vL). Then f satisfies component efficiency.

Theorem 3.3 Let f : G × L → IRn be a component efficient solution on the class
G × L. Then,

1. f is fair if and only if f = f s .
2. f is upper equivalent if and only if f = f u .
3. f is lower equivalent if and only if f = f �.
4. f satisfies the equal loss property if and only if f = f e.
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Proof Since each solution is a marginal value vector or a convex combination of
marginal value vectors, from Lemma 3.2 it follows that each of the four solutions
satisfies component efficiency. Below we show that each of the four solutions satis-
fies the corresponding edge property, and we also prove that each property together
with component efficiency yields a unique solution. To do so, let l = |L| be the
number of edges and c = |CL(N )| the number of components of (N , L). Since
L ∈ L, we have that l + c = n.

1. That f s(v, L) = ψ(vL) is fair follows from Myerson (1977) who characterized
this solution by component efficiency and fairness on the class of all graph-
games, see van den Brink (2001) for a related result on the class of TU-games.
Since this does not imply uniqueness on the subclass of line-graph games, we
show that there is a unique solution f on G×L satisfying component efficiency
and fairness by induction on the number of edges. [This goes along similar lines
as shown by Myerson (1977) on the class of all graph games.] First, let L be
empty, i.e., all players are isolated. Then by component efficiency it follows
that fi (v, L) = v({i}), i = 1, . . . , n. Next, for some l, 1 ≤ l ≤ n − 1, suppose
that f (v, L ′) is uniquely determined for each L ′ with |L ′| ≤ l −1. Let {i, i +1}
be an edge in (N , L). Then the fairness property says that

fi (v, L)− fi (v, L(i)) = fi+1(v, L)− fi+1(v, L(i)), (4)

where the values fh(v, L(i)), h = i, i + 1, are known by the induction hypoth-
esis and |L(i)| = l − 1. Since there are c equations of type (3) and l equations
of type (4) and all the c + l = n equations are linearly independent, these
equations uniquely determine f (v, L).

2. To show that f u is upper equivalent note that for any v ∈ G and for all i =
1, . . . , n − 1, j = 1, . . . , i , we have by definition of the restricted game that
vL [1, j] = vL(i)[1, j].1 Hence f u

j (v, L) = mu
j (v

L) = vL [1, j] − vL [1, j −
1] = vL(i)[1, j]−vL(i)[1, j −1] = mu

j (v
L(i)) = f u

j (v, L(i)) for j = 1, . . . , i .
So, f u is upper equivalent.
Next, suppose that f satisfies component efficiency and the upper equivalent
property. Let {i, i + 1} be an edge in a component K of (N , L) and let K i

be the component in (N , L(i)) containing i , i.e., K i = {h ∈ K |h ≤ i}. Then
component efficiency implies that

∑
h∈K i fh(v, L(i)) = v(K i ). Therefore, the

upper equivalent property implies that

∑

h∈K i

fh(v, L) =
∑

h∈K i

fh(v, L(i)) = v(K i ). (5)

Again, the c equations of type (3) and l equations of type (5) uniquely determine
f (v, L).2

3. The proof of this case is analogous to the case above. First, for any v ∈ G and for
all i = 1, . . . , n − 1, j = i + 1, . . . , n, we have by definition of the restricted
game that vL [ j, n] = vL(i)[ j, n]. Hence f �j (v, L) = m�

j (v
L) = vL [ j, n] −

1 Here and below we apply the shortening v[i, j] = v([i, j]).
2 Because the upper equivalent property reduces to equations of the type (5), for this case it is

not needed to use induction on the number of edges.
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vL [ j + 1, n] = vL(i)[ j, n] − vL(i)[ j + 1, n] = m�
j (v

L(i)) = f �j (v, L(i)) for

j = i + 1, . . . , n. So, f � is lower equivalent.
Next, suppose that f satisfies component efficiency and the lower equivalent
property. Let {i, i+1}be an edge in a component K of (N , L) and let K i+1 be the
component in (N , L(i)) containing i +1, i.e., K i+1 = {h ∈ K |h ≥ i +1}. Then
component efficiency implies that

∑
h∈K i+1 fh(v, L(i)) = v(K i+1). There-

fore, the lower equivalent property implies that
∑

h∈K i+1

fh(v, L) =
∑

h∈K i+1

fh(v, L(i)) = v(K i+1). (6)

Again the c equations of type (3) and l equations of type (6) uniquely determine
f (v, L).

4. First, observe that

i∑

j=1

(
mu

j

(
vL

)
− mu

j

(
vL(i)

))
= 0

=
n∑

j=i+1

(
m�

j

(
vL

)
− m�

j

(
vL(i)

))

and

i∑

j=1

(
m�

j

(
vL

)
− m�

j

(
vL(i)

))
= vL(N )− vL(i) (N )

=
n∑

j=i+1

(
mu

j

(
vL

)
−mu

j

(
vL(i)

))
.

These equations follow directly from the definition of m�,mu, and the obvi-
ous equalities vL [1, i] = vL(i)[1, i] and vL [i + 1, n] = vL(i)[i + 1, n], i =
1, . . . , n − 1). Summing up these two equations and substituting f e(v, L) =
1
2 (m

u(vL)+ m�(vL)), we obtain that

2
i∑

j=1

( f e
j (v, L)− f e

j (v, L(i))) = 2
n∑

j=i+1

( f e
j (v, L)− f e

j (v, L(i))),

showing that f e satisfies the equal loss property.
Next, suppose that f satisfies component efficiency and the equal loss prop-
erty. Let {i, i + 1} be an edge in a component K of (N , L) and let K s be
the component in (N , L(i)) containing s, s = i, i + 1. Then component effi-
ciency implies that

∑
h∈K s fh(v, L(i)) = v(K s), s = i, i + 1, and, moreover,∑

h∈K ′ fh(v, L(i)) = ∑
h∈K ′ fh(v, L) = v(K ′) for all K ′ ∈ CL(N ) such that

K ′ �= K . Therefore, the equal loss property implies that
∑

h∈K i

fh(v, L)− v(K i ) =
∑

h∈K i+1

fh(v, L)− v(K i+1). (7)
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Again the c equations of type (3) and l equations of type (6) uniquely determine
f (v, L).

�
The assertions of Theorem 3.3 show that any of the functions f s , f u , f � and f e

is characterized as a solution satisfying component efficiency and one other (edge)
property. Observe that the induction on the number of edges is only needed in case
of the first assertion.

To conclude this section, recall from the end of section 2 that for a superadditive
v, the marginal value vectors mu(vL) and m�(vL) are in the Core of vL and thus
also the average of these two vectors. Therefore the upper equivalent property, the
lower equivalent property and the equal loss property result in solutions that are
stable in the sense that they belong to the Core of the restricted game. The fairness
property may give a solution outside the Core. Core stability of the Shapley value
is guaranteed when the (restricted) game is convex.

4 Distributing Harsanyi dividends

In this section we compare the four solutions in terms of the distribution of the
Harsanyi dividends. A solution f on G is called a Harsanyi solution if it distributes
the dividend of each coalition S in a TU-game among the players in S according
to a given sharing system. To state this precisely, the collection of sharing systems
is given by

P = {p =
(

pS
)

S∈� |pS ∈ IRn, pS
i = 0 for i ∈ N \ S, pS

i ≥ 0 for i ∈ S,

and
∑

j∈S

pS
j = 1, for each S ∈ �}

and a sharing system p ∈ P assigns for each S ∈ � (the collection of nonemp-
ty coalitions) a nonnegative share pS

i to every player i ∈ S with the sum of these
shares equal to one. For a given sharing system p ∈ P , the corresponding Harsanyi
solution, see Vasil’ev (1982, 2003), is the solution φ p on G given by

φ
p
i (v) =

∑

{S∈�|i∈S}
pS

i �
S(v), i ∈ N ,

i.e., this solution assigns to player i ∈ N in game v ∈ G the sum of i’s share
pS

i �
S(v) in the Harsanyi dividends �S(v) over all coalitions S ∈ � contain-

ing i . The payoff vector φ p(v) is called a Harsanyi payoff vector. Since v(N ) =∑
S∈� �S(v), for each sharing system p ∈ P it holds that

∑
i∈N φ

p
i (v) = v(N ),

and thus each Harsanyi solution is efficient. Distributing each dividend equally
among the players of the corresponding coalition, i.e. taking the equal sharing sys-
tem pS

i = (1/|S|), i ∈ S, S ∈ �, yields the Shapley value as one of the Harsanyi
solutions.

Also any function f that assigns to game v the marginal value vector mπ (v)
for some given permutation π is a Harsanyi solution. This can be seen as follows.
For given π and coalition S ⊆ N , let i(S) be the player in S with the highest rank
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number, i.e., π( j) ≤ π(i(S)) for all j ∈ S. Let the sharing system p(π) ∈ P be
defined by pS

j (π) = 1 if j = i(S) and pS
j (π) = 0 for all j �= i(S). Then it follows

straightforward (see, e.g. Derks et al. 2006) that

mπ (v) = φ p(π)(v),

i.e., the marginal value vector mπ (v) equals the Harsanyi payoff vector obtained
by giving the dividend of any coalition S to the last player in S according to the
permutation π . Hence, the solution f on G assigning f (v) = mπ (v) to any v ∈ G
is a Harsanyi solution with sharing system p = p(π).

We are now ready to characterize the four solutions of section 3 in terms of
the distribution of the dividends of the restricted game vL . From Theorem 3.3 we
know that component efficiency and the upper equivalent property yield the solu-
tion f u assigning to each line-graph game (v, L) the marginal value vector mu(vL)
of the restricted game. From the discussion above it now follows that according
to the upper equivalent property the dividend of a coalition [h, k] in the restricted
game vL is fully given to the last player k. Similarly, the lower equivalent property
implies that this dividend is fully given to the first player h. According to the equal
loss property the dividend of coalition [h, k] in vL is equally divided among the
two players h and k. Finally, the fairness property results in an equal division of
the dividend of [h, k] in vL among all players in [h, k].

Which of these rules is the most appropriate one, depends on the underlying
situation. To give an example, suppose that v[i, n] ≥ v[i +1, n], i = 1, . . . , n −1,
and any edge {i, i + 1} is under control of player i , i = 1, . . . , n − 1, i.e., player i
has the power to decide on whether to keep or to delete this edge from the graph. In
case i deletes the edge, no cooperation between the players in front of the edge and
the players after the edge is possible anymore. In this situation the lower equiv-
alent property seems to be the most appropriate solution. The lower equivalent
property says that, when i deletes the edge between i and i + 1, the players after
i are not hurt. So, only players j in front of i and i itself will suffer from deleting
the edge {i, i + 1}, giving player i an incentive not to delete the edge. (We will
illustrate this with some specific examples in the next section.) Similarly, the upper
equivalent property, and thus the solution f u , seems to be more appropriate when
v[1, i + 1] ≥ v[1, i], i = 1, . . . , n − 1, and player i + 1 is in control of the edge
{i, i + 1}, i = 1, . . . , n − 1. Consequently, the function f e (which satisfies the
equal loss property) may be appropriate when both i and i + 1 have equal control
on the edge {i, i +1}. Note that fairness equalizes the change in payoffs of only the
two players on the deleted edge, while the resulting Shapley solution gives an equal
distribution of the dividends among all players in the corresponding coalition. In
contrast, the equal loss property equalizes the change in total payoffs of all players
at both sides of the deleted edge, while the resulting solution equally shares the
dividend between the two extreme players in the corresponding coalition.

We conclude this section with an explicit expression for the dividends of the
restricted game vL . It is well-known that in a restricted game any unconnected
coalition has dividend zero. Applying a general formula given in Owen (1986) for
cycle-free graphs to the case of line-graph games, it follows that the dividend of a
connected coalition [i, j], j ≥ i , in the restricted game vL is given by

�[i, j] (vL
)

= v[i, j] − v[i + 1, j] − v[i, j − 1] + v[i + 1, j − 1], (8)
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(with the convention that v[h, k] = v(∅) = 0 when h > k). We now say that
a line-graph game (v, L) is linear-convex if for all i, j with j > i it holds that
�[i, j](vL) ≥ 0. Clearly, a line-graph game (v, L) is linear-convex if game v is
convex, since linear-convexity only requires the convexity conditions when S =
[i +1, j] and T = [i, j −1] for some j > i . It is well-known that a game is convex
when all dividends of coalitions containing at least two players are non-negative.
With this it follows that a line-graph game (v, L) is linear-convex if and only if
the restricted game vL is convex. So, if (v, L) is linear-convex, fairness yields a
payoff vector in the Core of the restricted game.

5 Applications

Many economic situations can be modeled as line-graph games. In this section we
consider two applications, one-machine sequencing games and the water distribu-
tion problem. We will show that the modeling of economic situations as line-graph
games can simplify the analysis of these situations considerably and helps to get
more insight. This also shows that line-graph games are an interesting subset of
the class of all graph games and motivates the study of this subclass of games.

5.1 One-machine sequencing games

A one-machine sequencing situation, see, e.g. Curiel et al. (1993, 1994) is described
as a triple (N , p, q), where N = {1, . . . , n} is the set of jobs in a queue to be pro-
cessed, p ∈ IRn+ is an n-vector with pi the processing time of job i and q = (qi )i∈N
is a collection of cost functions qi : IR+ → IR+, specifying the costs qi (t) where
t is the total time needed to complete job i . For a permutation3 ρ on N describing
the positions of the jobs in the queue, the completion time of job i is given by
Ti (ρ) = ∑

{ j |ρ( j)≤ρ(i)} p j , i.e. the sum of its waiting time and its own processing
time. The cost of processing i is given by Ci (ρ) = qi (Ti (ρ)). The total cost of
completing the jobs in a coalition S of jobs given a permutation ρ is given by
CS(ρ) = ∑

i∈S Ci (ρ). In the sequel we assume without loss of generality that the
initial positions of the jobs are given by the permutation ρ0 with ρ0(i) = i for all
i ∈ N , with cost CS(ρ

0), S ⊆ N .
Each coalition S can obtain cost savings by rearranging the jobs amongst its

members. The minimal cost of the grand coalition is given by CN = minρ CN (ρ).
Members of any other coalition S can only rearrange their positions under the
condition that the members of S are not allowed to ‘jump’ over jobs outside S.
So, a permutation ρ is admissible for S if and only if for any j �∈ S the set of its
predecessors does not change, i.e., for any j �∈ S it should hold that {k ∈ N |ρ(k) <
ρ( j)} = {k ∈ N |k < j}. Let A(S) be the set of admissible permutations for S.
Then the minimal cost of S is CS = minρ∈A(S) CS(ρ). This gives the cost savings
sequencing game v given by

v(S) = CS(ρ
0)− CS, S ⊆ N . (9)

3 In this section we denote permutations representing an order in a queue by ρ to distinguish
them from an order π in marginal value vectors.
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Obviously, since only permutations in A(S) are admissible, only coalitions of
consecutive players can realise cost reductions. So, taking the line-graph (N , L)
with L = Lc = {{i, i + 1}|i = 1, . . . , n − 1}, it follows immediately that the cost
savings sequencing game v is equal to the restricted game vL of the corresponding
line-graph game (v, L) given by equation (2),

v(S) = vL(S) =
∑

T ∈CL (S)

v(T ), S ⊆ N .

In other words, a cost savings sequencing game can be seen as a line-graph game
on the initial order in the queue4. By definition, v is superadditive and as mentioned
at the end of section 2, this implies that each of the solutions f u and f �, and thus
also f e, are Core stable.

Next, we compare the component efficient solutions discussed in this paper
with other solutions proposed in the literature for the special case of linear cost,
i.e. qi (t) = αi t for all t ≥ 0, with αi > 0. In this case it is well-known that for
each coalition [i, j] holds

v[i, j] =
∑

{k,h∈[i, j]|k<h}
gkh,

where gkh = max(0, αh pk −αk ph) is the possible gain of a switch between players
k and h in any permutation such that player k is directly in front of h, see, e.g.
Curiel (1988). Applying equation (8) we obtain for any coalition [i, j], i < j , that

�[i, j](v) = �[i, j](vL) = v[i, j] − v[i + 1, j] − v[i, j − 1]
+v[i + 1, j − 1] = gi j ≥ 0.

So, all dividends of the game v = vL are nonnegative and thus in this case also the
Shapley value is in the Core.

Curiel (1988) proposed the equal gain splitting (EGS) solution which has been
characterized by Hamers (1995) as the unique solution satisfying efficiency, the
equivalence property (when two initial orders only differ with respect to the mutual
positions of the players in front of some player h, then this player gets the same
payoff in both situations) and the switch property (if two consecutive players switch
position, then both players get the same change of their payoffs in the new situation
when compared with their payoffs in the original situation). It has been shown that
this solution yields the payoff vector

f EGS
h (v) = 1

2

⎛

⎝
∑

j>h

ghj +
∑

i<h

gih

⎞

⎠ , h ∈ N .

4 The sequencing situation described here is different from the queueing situation considered
by Maniquet (2003) and Chun (2005) in which there is no initial order of the players. They look
for a fair allocation of utility (consisting of the waiting cost that can be compensated by monetary
transfers) depending only on the waiting cost of the players. Maniquet’s queueing game is not a
line-graph game since any two-player coalition can have a positive dividend. On the other hand,
all other coalitions have a zero dividend in his game, while in a line-graph game also coalitions
of more than two players can have a positive dividend.
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In the previous section we have seen that the component efficient solution f e

distributes the dividend gi j of any coalition [i, j] equally over the first and the
last player of the coalition. Hence, it follows that f e(v) = f EGS(v), i.e., when
applied to the linear cost one-machine sequencing game, the component efficient
solution for line-graph games satisfying the equal loss property yields the Equal
Gain Splitting rule.

Fernández et al. (2005) propose a cost assignment rule such that the net-cost
of player h is given by the cost of the waiting time in the initial order minus the
savings obtained from cooperation, i.e., the net-cost cu

h(v, L) of player h is given
by

cu
h(v, L) = Ch(ρ

0)−
∑

j<h

g jh, h ∈ N . (10)

They show that this cost-assignment rule is the unique solution that is Core stable
and satisfies the so-called property of drop out monotonicity (DOM), stating that
if one of the players leaves the queue, for each of the remaining players the costs
are nonincreasing. DOM implies that when player k drops out, the players in front
of k are not affected, while for the players after k the costs are decreasing, which
seems to be a very appealing and reasonable property. However, recalling that the
upper equivalent component efficient solution f u assigns the dividend of any coa-
lition [i, j] to the last player j in the coalition, equation (10) shows that the DOM
stable solution corresponds to the solution in which the cost savings are distributed
among the players according to f u .

As we have seen in the previous section, the upper equivalent solution f u

assigns the dividends of cooperation fully to the last player in the coalition, and
therefore does not seem to be very reasonable in sequencing situations. Thus, the
attractiveness of DOM of a stable solution must be reconsidered. It has the serious
drawback that it does not give any incentive to a player i to cooperate with its suc-
cessors in the queue. Suppose that player i is not willing to accept any permutation
ρ that places i after a player k > i . This refusal of i to cooperate with the players
after her implies that the dividends (cost savings) ghj , h ≤ i , j > i , can not be
realised anymore. However, the DOM-stable solution assigns any cost savings ghj
to the last player j , so the refusal of i to cooperate with the players after her does
not hurt the players h ≤ i , in particular not player i herself.

The DOM-stable solution may also be criticized by a noncooperative argument.
Consider the first two players in the queue and suppose g12 > 0, i.e., it is optimal
to reverse the initial order and to place 2 in front of 1. The upper equivalent rule
f u fully assigns these cost savings to player 2. However, player 1 has the power to
play the noncooperative ultimatum game and to offer the first place in the queue
to player 2 if player 2 is willing to give all the gains of this change to player 1,
i.e. player 1 can sell its place against a price equal to α1 p2 (the additional cost of
waiting for player 1) plus all gains g12 of this trade. Since player 2 is indifferent
to accepting this offer or not, there is no reason to refuse, and certainly if player 1
offers its place against a slightly lower price it is beneficial for player 2 to accept
the offer. In fact, player 2 needs the cooperation of player 1 to become the first
player in the queue, or in words of the previous section, player 1 is in control of
the edge {1, 2}. Extending this reasoning we could say that any player i < n is in
control of the edge {i, i + 1}.
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As argued in the previous section, in such a situation the lower equivalent
solution f � assigning the full dividend gi j of any coalition [i, j] to its first player i
looks more appropriate than f u . Considering the structure of the sequencing situa-
tion and the dominance of player i over the edge {i, i +1}, any convex combination
of the lower equivalent solution f � and the equal loss property solution f e, giving
player i at least half of any dividend gi j , j > i seems to be a reasonable solution.

5.2 The water distribution problem

In their paper ‘Sharing a river’, Ambec and Sprumont (2002) consider the problem
of the optimal distribution of water to agents located along a river from upstream
to downstream. Let N = {1, . . . , n} be the set of players representing the agents on
the river, numbered successively from upstream to downstream, and let ei ≥ 0 be
the flow of water entering the river between player i − 1 and i , i = 1, . . . , n, with
e1 the inflow before the most upstream player 1. Further it is assumed that each
player has a quasi-linear utility function given by ui (xi , ti ) = bi (xi ) + ti where
ti is a monetary compensation to player i , xi is the amount of water allocated to
player i and bi : IR+ → IR is a continuous nondecreasing function yielding the
benefit bi (xi ) to player i of the consumption xi of water. An allocation is a pair
(x, t) ∈ IRn+ × IRn of water distribution and compensation scheme, satisfying

n∑

i=1

ti ≤ 0 and
j∑

i=1

xi ≤
j∑

i=1

ei , j = 1, . . . , n.

The first condition is a budget condition and says that the total amount of compen-
sations is nonpositive. The second condition reflects that any player can use the
water that entered upstream, but that the water inflow downstream of some player
can not be allocated to this player.

Because of the quasi-linearity and the possibility of making money transfers,
an allocation is Pareto optimal (efficient) if and only if the distribution of the water
streams maximizes the total benefits, i.e., the optimal water distribution x∗ ∈ IRn+
solves the maximization problem

max
x1,...,xn

n∑

i=1

bi (xi ) s.t.
j∑

i=1

xi ≤
j∑

i=1

ei , j = 1, . . . , n, and xi ≥ 0, i = 1, . . . , n.

(11)
A welfare distribution distributes the total benefits

∑n
i=1 bi (x∗

i ) of an optimal water
distribution x∗ among the players.

The problem to find a reasonable welfare distribution can be modeled as a
line-graph game (v, L) with L = Lc = {{i, i + 1}|i = 1, . . . , n − 1}. Obviously,
for any pair of players i, j with j > i it holds that water inflow entering the river
before the upstream player i can only be allocated to the downstream player j if all
players between i and j cooperate, otherwise any player between i and j can take
the flow from i to j for its own use. Hence, only coalitions of consecutive players
are admissible. To define the characteristic function v, put v(N ) = ∑n

i=1 bi (x∗
i )
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with x∗ a solution of (11). Further, for any connected coalition [i, j] of consecutive
players v[i, j] = ∑ j

h=i bh(x [i j]
h ), where x [i j] = (x [i j]

h )
j
h=i solves

max
xi ,...,x j ≥0

j∑

h=i

bh(xh) s.t.
h∑

k=i

xk ≤
h∑

k=i

ek, h = i, . . . , j. (12)

For any unconnected coalition S ⊂ N we have that

v(S) =
∑

T ∈CL (S)

v(T ),

so, similar as with one-machine sequencing cost-savings games, the restricted game
vL is equal to v. We denote without confusion the characteristic function vL by v
and refer to this game as the river game.

Clearly, a river game is superadditive and hence each of the functions f u , f �

and f e is Core stable. In case all functions bi are differentiable with derivative
going to infinity as xi tends to zero, strictly increasing and strictly concave, Ambec
and Sprumont (2002) have shown that the game is convex and hence also f s is
Core stable. In fact, it should be noticed from Section 4 that it is sufficient to prove
that v is linear-convex.

Under the conditions for convexity, Ambec and Sprumont (2002) propose as
solution the marginal value vector mu(v) and show that it is the unique element
in the Core satisfying the condition that any coalition gets at most its aspiration
level, defined as the highest utility which it can obtain when it can use all the water
of all the players 1, . . . , ŝ, where ŝ = max{s|s ∈ S}. Clearly, this implies that any
coalition [1, j] can get at most v[1, j], j = 1, . . . , n, and it follows that indeed the
marginal value vector mu(v) assigning mu

i (v) = v[1, i]−v[1, i −1], i = 1, . . . , n,
is the unique candidate in the Core satisfying the aspiration requirements.

As we have seen in section 3, the marginal value vector mu(v) is the payoff
vector assigned by the component efficient upper equivalent solution f u , and thus it
assigns all dividends of cooperation fully to the downstream agents. Consequently,
it has the property that when a player i does not want to cooperate, the players in
front of i , including i itself, are not hurt. However, as in the sequencing game, this
is a very counterintuitive outcome. Although any upstream coalition [1, i] can pre-
vent that coalition [i +1, n] gets more than v[i +1, n] by using all flows e1, . . . , ei
by itself, all benefits from cooperating go to the downstream agents.

Again the upper equivalent solution has the serious drawback that it does not
give any incentive to a player i to cooperate with its successors. Repeating the
reasoning once more, again we consider a two player situation and suppose it is
optimal to allocate a part of e1 to the second player. The upper equivalent solu-
tion requires that player 1 is just compensated by player 2 for its loss of utility,
i.e., player 1 receives a compensation t1 such that b1(x∗

1 ) + t1 = b1(e1). So, as
in the sequencing game, there is no reason for player 1 to cooperate. However,
again player 1 has the power to play the noncooperative ultimatum game and to
pass the stream e1 − x∗

1 to player 2 only if this latter player is willing to give up
all the gains of cooperation, i.e., player 1 can sell this stream against a price (or
compensation) equal to t1 = b2(x∗

2 ) − b2(e2). The resulting payoff for player 2
is given by b2(x∗

2 ) − t1 = b2(e2), making player 2 indifferent between accepting
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the offer or not. Also in this river game we may argue that player 1 is in control
of the edge {1, 2}. In general, since along the river any player i < n is in control
of the edge {i, i + 1} with its downstream neighbour i + 1, the lower equivalent
solution is more appropriate than the upper equivalent solution. Also any convex
combination of the lower equivalent solution and the equal loss property solution
is appropriate, since each such combination gives upstream agents at least as much
from the dividends of cooperation as downstream agents.
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