30 research outputs found

    Vδ2+ T cell response to malaria correlates with protection from infection but is attenuated with repeated exposure.

    Get PDF
    Vδ2+ γδ T cells are semi-innate T cells that expand markedly following P. falciparum (Pf) infection in naïve adults, but are lost and become dysfunctional among children repeatedly exposed to malaria. The role of these cells in mediating clinical immunity (i.e. protection against symptoms) to malaria remains unclear. We measured Vδ2+ T cell absolute counts at acute and convalescent malaria timepoints (n = 43), and Vδ2+ counts, cellular phenotype, and cytokine production following in vitro stimulation at asymptomatic visits (n = 377), among children aged 6 months to 10 years living in Uganda. Increasing age was associated with diminished in vivo expansion following malaria, and lower Vδ2 absolute counts overall, among children living in a high transmission setting. Microscopic parasitemia and expression of the immunoregulatory markers Tim-3 and CD57 were associated with diminished Vδ2+ T cell pro-inflammatory cytokine production. Higher Vδ2 pro-inflammatory cytokine production was associated with protection from subsequent Pf infection, but also with an increased odds of symptoms once infected. Vδ2+ T cells may play a role in preventing malaria infection in children living in endemic settings; progressive loss and dysfunction of these cells may represent a disease tolerance mechanism that contributes to the development of clinical immunity to malaria

    Predictors of fetal anemia and cord blood malaria parasitemia among newborns of HIV-positive mothers

    Get PDF
    Background: Malaria and HIV infections during pregnancy can individually or jointly unleash or confound pregnancy outcomes. Two of the probable outcomes are fetal anemia and cord blood malaria parasitemia. We determined clinical and demographic factors associated with fetal anemia and cord blood malaria parasitemia in newborns of HIV-positive women from two districts in Ghana. Results: We enrolled 1,154 antenatal attendees (443 HIV-positive and 711 HIV-negative) of which 66% were prospectively followed up at delivery. Maternal malaria parasitemia, and anemia rates among HIV+ participants at enrolment were 20.3% and 78.7% respectively, and 12.8% and 51.6% among HIV- participants. Multivariate linear and logistic regression models were used to study associations. Prevalence of fetal anemia (cord hemoglobin level < 12.5 g/dL) and cord parasitemia (presence of P. falciparum in cord blood at delivery) were 57.3% and 24.4% respectively. Factors found to be associated with fetal anemia were maternal malaria parasitemia and maternal anemia. Infant cord hemoglobin status at delivery was positively and significantly associated with maternal hemoglobin and gestational age whilst female gender of infant was negatively associated with cord hemoglobin status. Maternal malaria parasitemia status at recruitment and female gender of infant were positively associated with infant cord malaria parasitemia status. Conclusions: Our data show that newborns of women infected with HIV and/or malaria are at increased risk of anemia and also cord blood malaria parasitemia. Prevention of malaria infection during pregnancy may reduce the incidence of both adverse perinatal outcomes. © 2013 Laar et al.; licensee BioMed Central Ltd

    Immunity to HIV-1 Is Influenced by Continued Natural Exposure to Exogenous Virus

    Get PDF
    Unprotected sexual intercourse between individuals who are both infected with HIV-1 can lead to exposure to their partner's virus, and potentially to super-infection. However, the immunological consequences of continued exposure to HIV-1 by individuals already infected, has to our knowledge never been reported. We measured T cell responses in 49 HIV-1 infected individuals who were on antiretroviral therapy with suppressed viral loads. All the individuals were in a long-term sexual partnership with another HIV-1 infected individual, who was either also on HAART and suppressing their viral loads, or viremic (>9000 copies/ml). T cell responses to HIV-1 epitopes were measured directly ex-vivo by the IFN-γ enzyme linked immuno-spot assay and by cytokine flow cytometry. Sexual exposure data was generated from questionnaires given to both individuals within each partnership. Individuals who continued to have regular sexual contact with a HIV-1 infected viremic partner had significantly higher frequencies of HIV-1-specific T cell responses, compared to individuals with aviremic partners. Strikingly, the magnitude of the HIV-1-specific T cell response correlated strongly with the level and route of exposure. Responses consisted of both CD4+ and CD8+ T cell subsets. Longitudinally, decreases in exposure were mirrored by a lower T cell response. However, no evidence for systemic super-infection was found in any of the individuals. Continued sexual exposure to exogenous HIV-1 was associated with increased HIV-1-specific T cell responses, in the absence of systemic super-infection, and correlated with the level and type of exposure

    Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models.

    Get PDF
    Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.This work was funded by Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk) grant BB/K004514/1. D.P.W. was funded by a Wellcome Trust (https://wellcome.ac.uk) Infection and Immunity PhD rotation studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Evidence for a Long-Lived Pleistocene Lake, Carrizo Plain, California

    No full text
    Two recently obtained cores provide evidence of a long-lived lake that occupied the Carrizo Plain during the Pleistocene. Both cores come from an elevation of 584 masl on a portion of the former lake floor that was abandoned during the Holocene. The longer of the two cores (~42 m) has been sampled for a variety of analytical studies (e.g., palynology, isotopic chemistry, environmental magnetism, and SEM-petrography). The magnetic susceptibility signal contains two notable features corresponding to lithologies consistent with reducing conditions. The higher of these features occurs near the surface, the lower at ~18 m depth. A 14C date on charcoal from the upper reduced zone places the top of this zone at no older than 17.74 0.330 14C ka (20.24-22.00 cal ka). This date is consistent with OSL dates on geomorphic features associated with a highstand at 595 masl. The youngest age of the highstand shoreline was constrained by an OSL date of 16.7 ka from the top of the corresponding clay dune. Assuming that reducing conditions correspond to deep water, the new 14C date suggests that the upper reduced zone represents a Stage 2 pluvial maximum lake in the Carrizo Plain. If the lower reduced zone has a similar origin, then the Carrizo Plain has held a lake since well before Stage 6 time. This implication substantially extends the time interval of lacustrine deposition on the floor of the Carrizo Plain and, therefore, the time since the basin lost external drainage. The present lake floor is tilted due to deformation likely associated with the nearby San Andreas Fault. The lake sediment cores were taken from a surface above the present lake (582 masl) presumably abandoned by this tilting sometime after the maximum highstand. Thus, any record of Holocene deposition, if it ever existed at either core site, has been lost, probably by deflation

    Genetic dissection of myopia: evidence for linkage of ocular axial length to chromosome 5q

    No full text
    PURPOSE: To estimate heritability and locate quantitative trait loci influencing axial length. DESIGN: Classic twin study of monozygotic and dizygotic twins reared together. PARTICIPANTS: Eight hundred ninety-three individuals from 460 families were recruited through the Twin Eye Study in Tasmania and Brisbane Adolescent Twin Study (BATS) and had ocular axial length measured. METHODS: Structural equation modeling on the entire sample was used to estimate genetic and environmental components of variation in axial length. Analysis of existing microsatellite marker genomewide linkage scan data was performed on 318 individuals from 142 BATS families. MAIN OUTCOME MEASURE: Ocular axial length. RESULTS: The heritability estimate for axial length, adjusted for age and sex, in the full sample was 0.81. The highest multipoint logarithm of the odds (LOD) score observed was 3.40 (genomewide P = 0.0004), on chromosome 5q (at 98 centimorgans [cM]). Additional regions with suggestive multipoint LOD scores were also identified on chromosome 6 (LOD scores, 2.13 at 76 cM and 2.05 at 83 cM), chromosome 10 (LOD score, 2.03 at 131 cM), and chromosome 14 (LOD score, 2.84 at 97 cM). CONCLUSION: Axial length, a major endophenotype for refractive error, is highly heritable and is likely to be influenced by one or more genes on the long arm of chromosome 5
    corecore