167 research outputs found

    Reinforcer magnitude and demand under fixed-ratio schedules with domestic hens

    Get PDF
    This study compared three methods of normalizing demand functions to allow comparison of demand for different commodities and examined how varying reinforcer magnitudes affected these analyses. Hens responded under fixed-ratio schedules in 40-min sessions with response requirement doubling each session and with 2-s, 8-s, and 12-s access to wheat. Over the smaller fixed ratios overall response rates generally increased and were higher the shorter the magazine duration. The logarithms of the number of reinforcers obtained (consumption) and the fixed ratio (price) were well fitted by curvilinear demand functions (Hursh et al., 1988. Journal of the Experimental Analysis of Behavior 50, 419–440) that were inelastic (b negative) over small fixed-ratios. The fixed ratio with maximal response rate (Pmax) increased, and the rate of change of elasticity (a) and initial consumption (L) decreased with increased magazine duration. Normalizing consumption using measures of preference for various magazine durations (3-s vs. 3-s, 2-s vs. 8-s, and 2-s vs. 12-s), obtained using concurrent schedules, gave useful results as it removed the differences in L. Normalizing consumption and price (Hursh and Winger, 1995. Journal of the Experimental Analysis of Behavior 64, 373–384) unified the data functions as intended by that analysis. The exponential function (Hursh and Silberberg, 2008. Psychological Review, 115, 186–198) gave an essential value that increased (i.e., α decreased significantly) as magazine duration decreased. This was not as predicted, since α should be constant over variations in magazine duration, but is similar to previous findings using a similar procedure with different food qualities (hens) and food quantities (rats)

    Pursuit of environmental justice in urban forest planning and practice

    Get PDF
    IntroductionThere is a growing demand for urban forest management that prioritizes genuine community involvement, acknowledges power imbalances within society, and embraces the principles of environmental justice. To assess current initiatives and share better/best approaches, examining how environmental justice principles are applied in urban forest planning and practice is crucial. This study aims to understand the perspectives of urban foresters on the factors that either facilitate or impede the attainment of environmental justice goals.MethodsInterviews were conducted with urban foresters from non-profit organizations and municipal government in San Francisco, California, and Seattle, Washington. The interviewees were asked to identify and discuss their tree planting and maintenance strategies, public engagement protocol, and inter-organizational collaboration processes. To provide a contextual understanding of environmental injustice in the study cities, the historical racist practice of neighborhood redlining was examined alongside current tree canopy cover, locations of environmental hazards, and the spatial distribution of persons of color and those living in poverty.ResultsThe findings revealed that urban forestry professionals in each city approached environmental justice in distinct yet complementary ways: San Francisco prioritized distributional justice, while Seattle focused on elements of procedural and recognitional justice. The Race and Social Justice Initiative in Seattle and Proposition E in San Francisco have been instrumental in identifying and addressing inequities in urban forest planning and practice.Discussion/conclusionCreating fair and inclusive urban forestry practices that prioritize disadvantaged neighborhoods has been a difficult task for both cities. Acknowledging and addressing past policies and cultural perspectives that have led to marginalization is crucial for building trust with these communities. Moving forward, prioritizing recognitional justice in urban forest planning and management should be a top priority

    Developing Performance Indicators for Nature-Based Solution Projects in Urban Areas: The Case of Trees in Revitalized Commercial Spaces

    Get PDF
    It is becoming increasingly important to audit nature-based solutions (NBS) projects to understand their utility in addressing urban sustainability goals. However, the ecological and social complexity of such projects makes it difficult to develop performance indicators. Focusing on specific case studies and specific natural elements could advance this area of research. Urban trees are a vital component of many NBS initiatives. Cities with ambitious tree-planting goals rely on urban revitalization to provide the conditions necessary to grow trees in highly urbanized areas, and in this way deploy NBS projects. We present a conceptual and methodological framework of case-specific performance indicators in the context of NBS projects. This framework addresses the type of parameters, measures, and data that could be considered when assessing small-scale, NBS-inspired, revitalization projects, taking the natural elements of these projects, in this case the trees, as the unit of assessment. Our framework integrates ecological, environmental, and social indicators of tree performance and was developed with the experience gained from on-going, multi-year research projects at two revitalization sites in Toronto, Canada, where street trees grew in engineered sub-surface habitats. The framework includes indicators related to: urban tree ecology; tree characteristics; soils; climate and atmosphere; built environment; tree planting, care, and maintenance; social characteristics of the urban space; and human decisions and governance. This study frames the need for interdisciplinarity and case specificity in the development of performance indicators for NBS projects

    A Pedagogical Framework for the Design and Utilization of Place-Based Experiential Learning Curriculum on a Campus Farm

    Get PDF
    Campus agriculture projects are increasingly being recognized as spaces impactful to student engagement and learning through curricular and co-curricular programming; however, most campus farm activities are limited to agriculture or sustainability programs and/or co-curricular student clubs. Thus, campus farms are largely underutilized in the undergraduate curriculum, marking a need to explore the efficacy and impact of engaging a diverse array of disciplinary courses in the rich social, environmental, and civic context of local sustainable agriculture. The Farm Hub program presented here incentivizes instructors to refocus a portion of existing course content around the topic of local, sustainable agriculture, and reduces barriers to using a campus farm as a situated learning context for curricula. A pedagogical framework founded in place-based experiential learning (PBEL) theory was developed to guide instructors in the development and implementation of 4–6-week inquiry-based PBEL modules embedded in existing courses. The framework was converted into a research protocol to quantify program implementation fidelity and PBEL best practice adherence for the proposed lesson plans (intended) and their implementation (applied). The framework enables the development of a cohesive cross-curricular program so that the impact of implementation fidelity and best practice adherence to student learning outcomes in scientific literacy, place attachment and meaning, and civic mindedness can be assessed and the results utilized to develop a formal farm-situated PBEL pedagogical taxonomy. This framework can be applied to PBEL curriculum in natural spaces beyond campus farms

    iSAW: Integrating Structure, Actors, and Water to Study Socio-Hydro-Ecological Systems

    Get PDF
    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human–environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese

    Using the Light Microscopy Module (LMM) on the International Space Station (ISS), The Advanced Colloids Experiment (ACE) and MacroMolecular Biophysics (MMB)

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF

    Neonatal, infant, and under-5 mortality and morbidity burden in the Eastern Mediterranean region: findings from the Global Burden of Disease 2015 study

    Get PDF
    Objectives Although substantial reductions in under-5 mortality have been observed during the past 35 years, progress in the Eastern Mediterranean Region (EMR) has been uneven. This paper provides an overview of child mortality and morbidity in the EMR based on the Global Burden of Disease (GBD) study. Methods We used GBD 2015 study results to explore under-5 mortality and morbidity in EMR countries. Results In 2015, 755,844 (95% uncertainty interval (UI) 712,064–801,565) children under 5 died in the EMR. In the early neonatal category, deaths in the EMR decreased by 22.4%, compared to 42.4% globally. The rate of years of life lost per 100,000 population under 5 decreased 54.38% from 177,537 (173,812–181,463) in 1990 to 80,985 (76,308–85,876) in 2015; the rate of years lived with disability decreased by 0.57% in the EMR compared to 9.97% globally. Conclusions Our findings call for accelerated action to decrease child morbidity and mortality in the EMR. Governments and organizations should coordinate efforts to address this burden. Political commitment is needed to ensure that child health receives the resources needed to end preventable deaths

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z1.58z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure
    corecore