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Abstract Urbanization, climate, and ecosystem change represent major challenges for managing
water resources. Although water systems are complex, a need exists for a generalized representation of
these systems to identify important components and linkages to guide scientific inquiry and aid water
management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the
understanding of and transitions to sustainable water systems. Our goal was to produce an interdisci-
plinary framework for water resources research that could address management challenges across scales
(e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The
framework was designed to be generalizable across all human–environment systems, yet with sufficient
detail and flexibility to be customized to specific cases. iSAW includes three major components: structure
(natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key link-
ages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic
feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource
access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of
the iSAW framework by applying it to two research and management problems: understanding urban
water supply and demand in a changing climate and expanding use of green storm water infrastructure in
a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify
important components and linkages in complex and diverse water systems and facilitate communication
about those systems among researchers from diverse disciplines.

1. Introduction

In an era of global climate change and population growth, water system managers face numerous sus-
tainability challenges. Water systems are coupled human–natural systems, being affected by both human
and natural system drivers, and thus exhibit complex systems dynamics involving feedback loops, unpre-
dictability, and uncertainties [Liu et al., 2007]. Across the western United States, climate change is shifting
precipitation from winter snow to rainfall and advancing the onset of runoff earlier in the year [Barnett
et al., 2008; Gillies et al., 2012; Bardsley et al., 2013], with significant consequences for water supply quan-
tity (e.g., decreased snowpack) and timing (e.g., runoff occurring earlier in the year [Barnett et al., 2008]).
At longer time scales, droughts are expected to become more frequent and more severe, while flood risk
is also expected to rise due to increased storm frequency and intensity [Karl and Knight, 1998; Allan and
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Soden, 2008]. Meanwhile, the American West is undergoing rapid population growth and urbanization, and
new residential, commercial, and industrial uses are placing competing and changing demands on water
resources [Gober, 2010]. Ecological disturbance regimes, such as fire and bark beetle outbreaks, may be
exacerbated by a changing climate [Melillo et al., 2014] and could have additional implications for the water
yield and water quality from mountainous and forested ecosystems prevalent throughout the region. As a
result, water resource managers must address shifting patterns of water supply and demand [Bardsley et al.,
2013] in addition to potential changes in the frequency and severity of disturbances such as fires, floods,
and droughts.

Exacerbating these challenges, the shifting patterns in hydrologic and ecological events are plagued
with inherent uncertainties and discrepancies among studies, which spur scientific debate and result
in inconsistent forecasts that complicate the challenge of water management in the face of changing
conditions [Vano et al., 2014]. These management challenges present an emerging scientific challenge to
forge an integrated, interdisciplinary understanding of coupled human–water systems. Solving this chal-
lenge requires describing the most important system components and linkages of coupled human–water
systems and the critical tools that water managers can use to cope with changes and sustainably manage
water systems.

Many scientific disciplines have already recognized that human, hydrologic, and ecological components of
water systems must be examined with integrated approaches. Attempts to illustrate these linkages have
led to a proliferation of conceptual frameworks, which focus on a variety of mechanisms through which
human and environmental systems are interconnected. Integrative approaches, described with varying
terminology, include human–environment systems [Acevedo et al., 2008; Bennett and McGinnis, 2008],
social-ecological systems [Collins et al., 2000; Ostrom, 2009], ecosystem services [Millennium Ecosystem
Assessment, 2005; Collins et al., 2010], vulnerability [Eakin and Luers, 2006; Adger et al., 2009], political
ecology [Robbins, 2004; Molle, 2007], hazards and risk [Haque, 2000; Berkes, 2007], and many others. These
frameworks usually identify a limited set of mechanisms through which human and environmental sys-
tems are coupled (e.g., ecosystem services [Collins et al., 2010] or hazards and risks [Eakin and Luers, 2006]).
Some frameworks have focused on land-use change as the primary linkage between humans and their
environment [Acevedo et al., 2008], while others focus on the role of built infrastructure [Anderies et al.,
2004]. Most frameworks have yet to take a broad approach that considers diverse theories and types of
human–environment interactions from more than a few disciplines.

Early frameworks for understanding human–water interactions specifically represented humans as static
and separate from large-scale drivers of hydrology rather than as part of a dynamic coupled system [Srini-
vasan et al., 2012]. Subsequent best practices for water management, such as Integrated Water Resources
Management, Adaptive Environmental Assessment, and Adaptive Management, recommended including
different research disciplines, stakeholders, and policy makers [Holling, 1978; Walters and Hilborn, 1978;
Global Water Partnership, 2000]. However, advocates of these frameworks have also suggested major
changes to governance (Integrated Water Resources Management) or management processes (Adaptive
Management) without rigorously evaluating the relationships between management strategies and water
outcomes [Biswas, 2004; Medema et al., 2008]. In fact, the principles proposed in these frameworks are
themselves hypotheses that need testing. Other researchers have highlighted the need for theories and
research on the relationships among water management and social, environmental, and water resource
outcomes [Biswas, 2004; Medema et al., 2008].

The emerging literature on sociohydrology [Wagener et al., 2010; Pataki et al., 2011b; Sivapalan et al., 2012,
2014] aims for a broader scope than management framework approaches, moving beyond static interac-
tions between water and human systems to understand the co-evolutionary dynamics and emergent prop-
erties of coupled human–water systems. While the sociohydrology literature has defined a new domain of
inquiry and an overarching theoretical framework for understanding coupled human–water systems, the
literature to date has focused on explaining observed dynamics and has made more limited progress in set-
ting forth concrete hypotheses to test predictions about current and future water sustainability challenges.
One key exception is Elshafei et al. [2014], who developed a prototype conceptual framework for agricul-
tural systems that describes the human system component at a lumped scale with aggregate indicators.
However, we still need a framework that considers heterogeneous actors and their behaviors and that
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clearly links behavioral responses with endogenous physical and social structures. The framework should
identify or hypothesize the key mechanisms linking these various actors to other water system components
and enable monitoring of the effects of those linkages over time.

The diversity of approaches to study human–water systems also highlights the need for a conceptual frame-
work that explicitly links human, hydrologic, and ecological aspects of water systems and can be applied
to a wide range of water resource issues. The overarching goal of our work was to facilitate an understand-
ing of and transitions to sustainable water systems in a world driven by major climate, demographic, and
land-use changes. We did this by developing an integrated Structure-Actor-Water framework (iSAW) and
applying this framework to two case study examples in urbanizing Utah. This framework was designed to
be generalizable across all human–water systems, yet with sufficient detail and flexibility to be customized
to specific cases.

In this study, we: (1) produced an interdisciplinary framework for water resources research and man-
agement that is flexible and capable of focusing on water issues across scales (e.g., city to region) and
domains (e.g., water quantity and quality, transitioning, and urban landscapes); (2) found common ground
and facilitated collaborations by providing a nexus for building a shared understanding of the complex
water system in which we are collaboratively conducting research; and (3) identified key components and
linkages within human–water systems to identify and address knowledge gaps and guide collaborative
research designs.

2. Framework Development

2.1. Study System

This framework was developed as part of the Utah statewide iUTAH project (innovative Urban Transitions
and Aridregion Hydro-sustainability), an interdisciplinary collaboration in water sustainability research, edu-
cation, and outreach across academic disciplines and university institutions in Utah. The project is focused
on the rapidly urbanizing area along the Wasatch Range (Figure 1), where, as of 2010, 2.4 million people
(86% of Utah’s population) reside and where population is expected to reach nearly 5 million by 2060 (Utah
Governor’s Office of Planning and Budget, http://gomb.utah.gov/budget-policy/demographic-economic-
analysis). Annual precipitation in Utah ranges widely, from arid desert conditions to montane forests with
abundant snowfall. Human settlements in this region have historically been supported by snowmelt from
montane watersheds. Water management in the state has historically been and currently is driven by water
availability, regional water compacts, and prior appropriation water law where agricultural users generally
hold the most senior rights. Rapid population growth in combination with possible changes in water
supply due to climate change has uncertain consequences for the future of water resource management
in this region.

In response to these challenges, the iUTAH project was designed to address three key sets of research
questions: (1) What is the current water balance of the region, and how vulnerable are water resources
to changing climate and urbanization? (2) What is the current structure of land use and water manage-
ment, and how can these systems best adapt to future constraints on water resources? and (3) What are
the key linkages between the biophysical and human components of the water system, and how do these
linkages structure adaptation to water resource changes? The project involves a large interdisciplinary and
multi-institutional team that spans the biological, ecological, economic, engineering, hydrologic, planning,
policy, and social sciences. The work presented here addresses Question 3: the identification of linkages
among components of the water system for the purposes of better understanding of responses to changes
in water resources. This framework was used to refine and develop new sets of research questions and
hypotheses and to synchronize related project activities and guide coordinated data collection efforts.
The framework was also used to guide individual researchers in situating their particular research activities
within the larger integrated project.

2.2. Framework Development

Framework development took place over a period of approximately 1 year and followed principles and
best practices in conceptual and participatory modeling [Langsdale et al., 2013] including: (1) involving
all team members early and often to ensure their views were represented and (2) using an open and
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Figure 1. Wasatch range metropolitan area. Land cover data are from the National Land Cover Database [Jin et al., 2013].

transparent development process. We achieved these principles through frequent in-person meet-
ings and web-based conference calls. In-person meetings were held at different locations to allow
team members from distant institutions to participate. Web-based conference calls were essential for
more frequent meetings with larger groups, during which we were able to share documents and edit
the framework.

A core group comprising the authors developed and wrote up the framework with core group membership
open to all members of the larger project (more than 100 participants). Throughout the process, presen-
tations and framework and manuscript drafts were shared with the larger group, along with invitations
for feedback and participation. Initially, individual team members and small groups reviewed literature,
examined project documents, and met to identify both the study system’s principal components and link-
ages among the components. Next, these elements were organized into a draft conceptual diagram and
presented to the full team for feedback. The presentation was followed by small group discussions and
critiques of the framework, during which feedback was recorded and communicated to the organizers.
The core group further developed the framework through a series of smaller, half-day workshops where
the scope of major components was expanded and agreed upon, sub-components specified, and linkages
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Figure 2. The iSAW conceptual framework is organized around three main structure, actor, and water components (gray boxes), seven
key linkages (arrows), and a system boundary (light grey shaded box) that separates internal and external (box with dark shading)
components.

and labels revisited to clarify meaning and remove redundancies. One important workshop exercise was to
map ongoing water sustainability research onto the framework to confirm that the framework adequately
represented key linkages and components of ongoing research and identify additional components or link-
ages that were missing. The team reached a consensus on the framework (Figure 2) when all participants
agreed that no further changes were needed and that the accompanying text adequately described the
components and linkages.

Since participant input was at the heart of the process of developing the framework, there is always the
possibility that the individual biases of the participants shaped the structure, contents, and generalizabil-
ity of framework. To ensure the framework provided specificity while maintaining generalizability across
scales, domains, and participants’ differing areas of expertise and interest, we involved a large and diverse
set of participants. The framework underwent substantial changes as we iterated toward the consensus ver-
sion presented in this paper. Working with a broad and diverse team required coordinating among a large
number of people and finding a common language of communication; these challenges are often faced
by other large, interdisciplinary, multi-institutional research projects [O’Rourke and Crowley, 2012]. Section
3 describes the final consensus framework, while Section 4 presents two examples of how the framework
has been applied to ongoing research inquiries into key water issues.
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3. The Framework

The iSAW framework consists of the key components and linkages of a coupled human–water system.
Components represent major entities in the system: Water, Actors, and Structure. These components were
identified from project documents as being the key drivers and responders that were common across
project research interests and questions. As the iUTAH project focuses on water resource sustainability,
water quality and quantity were common responders, and most research was designed to address the
role of various types of structures (e.g., land use, built infrastructure, and ecosystem structure) and actors
in affecting water quality and quantity outcomes. Although water is a part of the structure of the envi-
ronment, we pull it out from structure to focus on the processes driving and responding to water quality
and quantity. These components are connected by linkages that describe the hypothesized interactions
among the major components.

3.1. System Components

Major components are enumerated by the numbers 1–3 on the diagram (Figure 2) and are underlined when
first introduced in the text. Sub-components are italicized.

3.1.1. Water

Water includes diverse aspects of both water quantity and quality. In terms of water quantity, we consider
how water is distributed in time and space. Metrics for water quantity include discharge in streams and
canals; the volumes of water in lakes, reservoirs, and groundwater aquifers; and spatial and temporal dis-
tributions of water, including precipitation, floods, and droughts. Equally important is the quality of water,
as measured by concentrations of pollutants, sediment, and limiting nutrients such as nitrogen and phos-
phorus, as well as bacterial or microbial populations that are related to human health or critical ecosystem
processes. Metrics for water quality include the spatial and temporal distribution of concentrations and
loads, including, for example, concentrations of nutrients along a montane to urban gradient or changes in
concentrations of sediment from base flow to stormflow in a stream.

From an ecological perspective, water quality parameters of interest include: total suspended and dissolved
solids, volatile suspended solids, dissolved organic carbon, dissolved inorganic nitrogen and phosphorus,
total nitrogen and total phosphorus, and dissolved anions and cations. Loads (i.e., total amounts) of these
constituents are useful for constructing constituent budgets to understand their sources and fates. Loads
are also common metrics for water quality regulations (e.g., total maximum daily load [TMDL]) and are
therefore targets for management. However, other possible contaminants are regulated based on their con-
centration (e.g., by the Environmental Protection Agency [EPA] Safe Drinking Water Act). The selection of
metrics for water quantity and quality monitoring is specific to individual studies.

3.1.2. Actors

Actors represent the individuals and organizations within the study system boundaries that make
water-related decisions, including operational (i.e., use and management) and planning, design, and
policy decisions. Although we consider individuals and organizations separately, it is important to note
the overlap between these categories. Organizations are made up of individuals, some of whom act as
representatives of those organizations, and many of the interactions between organizations are through
individuals. Individuals represent the smallest scale at which water management decisions and behav-
iors occur and include homeowners, residents, farmers, ranchers, business owners, community leaders,
representatives of water management and governance entities, and others. The behaviors of individual
actors within the water system can be driven by their objectives, knowledge, resources, beliefs, values,
and attitudes, although the balance of these attributes is still understudied and may vary across systems
[Braden et al., 2009]. For example, several studies have identified concern about environmental problems
(e.g., pollution, climate change) as a significant predictor of water conservation behaviors [Domene and
Saurí , 2006; Grafton et al., 2011], although others have found that attitudes were not as important as the
physical infrastructure by which people use water [Endter-Wada et al., 2008; Kilgren et al., 2010]. Individual
behaviors can also be affected by socioeconomic status [Larson et al., 2009] and perceptions or concerns
about what other people think [Braden et al., 2009]. Individuals may also act as part of social groups (such
as families, households, and neighborhood associations).
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Organizations are groups of actors that come together for a common goal. These groups can include
informal assemblages of individuals that are advocating on behalf of a specific water issue or more
formal entities that have socially recognized water management, allocation, enforcement, or other
responsibilities. Organizational actors span many scales of water management, from nongovernmental
to municipal to state to federal to international. Organizational actors include government agencies,
advocacy organizations (e.g., environmental groups, advisory committees), and various types of private
organizations (e.g., homeowner associations, engineering firms, and irrigation companies). Organizational
actions regarding water management have been considered from organizational theory [Braden et al.,
2009] and common pool resource perspectives [Ostrom et al., 1999], both of which focus on how internal
structures and rules within organizations affect water-related decisions. Less attention has been given to
how water organizations are interconnected with one another across space and time (for an exception,
see Muñoz-Erickson et al. [2010]).

3.1.3. Structure

Structure is a central component of water systems that shapes how water moves and water quality changes
through the system, enables or constrains water decisions, and patterns water-related behaviors. We identi-
fied the following three types of structure as key to the water system: natural (e.g., stream channels, ecosys-
tems, soils, topography, climate), built (e.g., land cover, building mix, landscaping, infrastructure), and social
(e.g., demographics, laws, norms, culture). The structural components of the conceptual framework are
illustrated as a Venn diagram to acknowledge that the boundaries between these three types of structure
overlap considerably. We further discuss each of the structural components below.

3.1.3.1. Natural Structure

The natural component of structure includes the topography, geology, soils, climate, composition and distri-
bution of biotic communities, and hydrology of the environment that have not been built by humans. While
we recognize that the term “nature” is problematic, we use it here as a succinct term to describe all nonan-
thropogenic aspects of the system. Important water-related natural structure in Utah includes watershed
topography, the spatial distribution of water bodies (streams, rivers, lakes, aquifers), soil structure, and the
distribution and composition of plant communities. Some of these features (e.g., watershed-scale topogra-
phy) are at the scale of the watersheds and are generally minimally affected by humans. Yet many aspects of
natural structure have been altered by humans in often large and observable ways, such as biotic commu-
nities (e.g., directly via forest management and indirectly through changes in climate). As such, the natural
sphere is deeply interconnected with the other two human structures (built and social).

3.1.3.2. Built Structure

Built structure represents the constructed features of the landscape that people design, create, oper-
ate, and maintain. Built structure can be considered across a range of scales, from outdoor irrigation
systems used by homeowners to regional reservoir and canal systems used to store and deliver water.
Built structure includes the constructed landscape of buildings, streets, and other impervious surfaces,
as well as centralized or decentralized infrastructure for water supply, wastewater, and storm water
conveyance, treatment, resource recovery, and reuse. Built structure also includes artificial groundwater
recharge basins and extraction wells. In Utah water systems, built structure can be described by land use
(e.g., urban, row crop agriculture, pasture, forest), land cover (e.g., imperviousness, landscaping types
as these affect water use and energy balances), aspects of buildings such as distributions and heights
(as these affect energy balances and therefore processes such as evapotranspiration), the distributions
and designs of conventional and green storm water infrastructure (as these can affect water balances,
nutrient cycling, and pollutant uptake and transformation), the distributions and designs of wastewater
infrastructure (collection, treatment, and reuse systems), and the distribution and designs of water supply
infrastructure, including reservoirs, canals, and aqueducts. In Utah, agricultural irrigation conveyance
infrastructure is a dominant landscape feature and often interacts with systems for municipal supply
and drainage.

3.1.3.3. Social Structure

Social structure refers to the relatively stable arrangements or relationships within society that system-
atically enable or constrain actors’ behaviors. Culture and institutions interact to create social structure.
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Cultural aspects of social structure include shared norms or understandings of how people should behave
and attitudes and values that are shared among groups of people in a social setting. Institutional aspects
of social structure refer to formal social arrangements such as property rights, laws, policies, programs, and
organizational procedures, as well as less formal social structure such as families, ethnic or racial groups,
interest groups, religions, and/or businesses. The stratification of members of society based on economic
or other attributes into relative positions of power represents social structural factors that influence (but
do not determine) relative positions of power and capacity for action among actors. Water-relevant social
structure in Utah (and much of the western United States) includes, for example, prior appropriation water
rights law [Huffaker et al., 2000], water pricing policies [Olmstead et al., 2007], patterns of economic and
social inequality [Jenerette et al., 2011], social networks [Muñoz-Erickson et al., 2010], and cultural norms
with regard to residential landscaping and conservation behaviors [Russell and Fielding, 2010]. Social struc-
ture directly influences built and natural structure through jurisdictional boundaries that set how, where,
and under what circumstances rules are applied to landscape and water systems [Endter-Wada et al., 2009;
Lookingbill et al., 2009].

3.2. System Linkages and Constraining and Enabling Factors

In iSAW, system components interact through several types of linkages, which are labeled A–G in Figure 2
and described below. Structure plays a central role in the model because the key linkages between actors
and water—water use (D) and perceptions (F)—are all enabled or constrained by the various configurations
of natural, built, and social structure of the water system. We discuss this idea more fully below.

3.2.1. The Role of Ecology, Biogeochemistry, and Hydrology

The structure of the environment affects water quantity and quality outcomes via a range of ecological,
biogeochemical, and hydrologic mechanisms (Figure 2, arrow A). Understanding the nature and extent of
these processes is important for understanding outcomes of both water quantity and water quality. The
distribution and composition of species, for example, influence water quality and quantity via effects on
energy, water, and pollutant balances from plot scales [Turnbull et al., 2008; Bradford et al., 2014] to regional
scales [Creed et al., 1996; LaMalfa and Ryel, 2008]. While many of these processes have been well studied in
natural systems, many aspects of the water balance and biogeochemical cycles are not well known in urban
and agricultural systems [Pataki et al., 2011a, 2011b; Bain et al., 2012].

Hydrologic processes—i.e., precipitation, infiltration, runoff, and evapotranspiration—are directly related
to features of the natural structure of the environment: topography, soil properties, vegetation composition
and distribution, and climate. The built structure of the environment alters the balance of these processes
through the explicit engineering of new flow paths (e.g., canals, storm drains), as well as through the modifi-
cation of surface characteristics (e.g., impervious surfaces), microlimate (e.g., urban heat islands), and plant
and soil communities [Pataki et al., 2011b]. Engineered infrastructure can affect groundwater infiltration,
evapotranspiration rates, or the transfer of water among basins, meaning that hydrologic models based on
topography may not represent actual flows and fluxes of water in many highly engineered water environ-
ments [Lookingbill et al., 2009].

Water quality is mediated by a wide range of biogeochemical processes, including nutrient uptake and
transformations. These processes are controlled by soil properties, the physical and chemical conditions of
the environment (i.e., presence of reactants and substrates as well as conditions necessary for reactions to
occur), and biotic communities. Many of these processes are well understood in natural watersheds and soils
[Hedin et al., 1998]. However, transitions to agricultural and urban land use alter water quality via changes to
both material transport pathways and opportunities for biogeochemical transformations [Groffman et al.,
2002, 2003]. Furthermore, urban and agricultural environments create novel biogeochemical settings (e.g.,
high inputs of nutrients in combination with pesticides in agricultural streams, or heavy metals in urban
streams) [Bernhardt et al., 2008] that are different than well-studied natural systems and which may not con-
form to models of ecosystem function developed in nonhuman-dominated systems. Finally, many aspects
of the built environment are designed to alter water quality, such as potable water or wastewater treatment
facilities and storm water control systems. The degree of treatment of potable water and wastewater and
the types and distribution of storm water control measures have important implications for water quality
as well as water quantity within a given hydrologic setting.
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3.2.2. Ecosystem and Geomorphological Change

While many processes and feedbacks in this coupled human–water system occur through the decisions
or behaviors of actors, water quantity and quality outcomes may directly affect natural components of
structure via ecological or geomorphological feedback processes (Figure 2, arrow B). For example, flood
conditions may alter geomorphological structure through the erosion and redeposition of sediment, and
this altered geomorphology may then affect the distribution of aquatic and riparian biota [Swanson et al.,
1998]. Research in semi-arid ecosystems has suggested that water quantity and quality conditions may
act as a positive feedback to natural structure, reinforcing vegetation patterns through the distribution
of nutrients, water, and sediment [Turnbull et al., 2008]. Another example is the effect of soil water con-
ditions on vegetation establishment, where long-term changes in hydrologic variables such as snowpack
(e.g., due to climate change) may lead to changes in vegetation communities [Kelly and Goulden, 2008].
Furthermore, as flow regimes in rivers and streams change due to natural or anthropogenic forces (e.g., cli-
mate change, water development, or land cover change), sediment transport and fluvial landforms are also
altered to bring these systems toward equilibrium. These processes affect riparian vegetation communities,
in-stream habitat, aquatic assemblages, and cycling of nutrients and organic matter [Brierley et al., 1999]. In
regions where increasing air temperatures are anticipated to shift precipitation from snowfall to rainfall,
hydrographs will likely become flashier with more frequent, larger winter storm pulses and longer, warmer
summer conditions [Null et al., 2010]. Variable precipitation and runoff could then, in turn, increase erosion
and sediment transport during winter in some reaches [Carpenter et al., 1992]. Warmer summer stream tem-
peratures from climate change could also be expected to affect photosynthesis and respiration in streams
[Carpenter et al., 1992], the distribution of fish and aquatic organisms, and riparian communities [Yarnell
et al., 2010; Null et al., 2013]. These ecological and geomorphological feedbacks may only be important for
built and social structures in extreme cases (e.g., major floods or storms). Most of the feedbacks from water
to social and built structure are expected to occur indirectly through social mechanisms (see arrows C and
F) as actors perceive and adapt to changes in the natural structure.

3.2.3. Planning, Design, and Policy

While much of the social-built-natural structure in any given water system enables or constrains different
forms of water decision-making over the short term, individual and organizational actors actively make
planning, design, and policy decisions, including decisions about governance, that shape the natural, social,
and built structure of the environment over medium and long terms (Figure 2, arrow C). These decisions
occur at and across a wide range of scales. For example, homeowners decide how to landscape their prop-
erty, cities determine pricing of their water supplies, water districts plan infrastructure improvements, and
interest groups engage with policymakers regarding water rights law and water quality policies.

Actors engaged in forest and watershed management, or those enforcing land-use regulations, make deci-
sions that can lead to transformative changes in both social and natural structure. For example, in response
to severe flooding and erosion during the 1930s in Utah, the Forest Service implemented new policies of
reforestation and erosion control measures (i.e., social structure). These new policies changed Forest Ser-
vice land management practices that in turn altered the composition and distribution of vegetation in the
surrounding mountains (i.e., natural structure) [Flores, 1983]. Logging activities also alter forest structure,
while the diversion of water through designed regional and local reservoir and canal systems also affects
the geomorphological and ecological structure of streams by altering flow regimes.

Built structure is created by actors and is affected by a range of actions, such as homeowner landscaping
choices, local zoning decisions, and reservoir planning. At the watershed scale, local water organizations,
including municipalities and water conservancy districts, make key decisions regarding the construction
and maintenance of irrigation, potable water, wastewater, and storm water infrastructure in Utah. Planning
conducted by municipal organizations directly impacts the built environment through permitting and zon-
ing [Nelson, 1978] and by setting policies such as urban growth boundaries [Bracken, 2007]. More generally,
individual and organizational actors frequently make decisions to build new infrastructure, repair existing
infrastructure, or decommission aging infrastructure.

Actors can also affect social structure through lobbying, voting, policy making, and other collective efforts
to alter knowledge and behavioral norms about water use, allocation, and management [Endter-Wada et al.,
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2009]. Regulatory actors, such as state agencies, enforce water rights and water laws, while policymakers,
including legislators, author legislation pertaining to water allocation and usage, conveyance, and safety.

Social structure, actors’ access to resources, and the risks they face critically influence actors’ abilities to
innovate and change policy, system designs, and planning processes. Changes in policy, design, and plan-
ning are often intertwined and the existing built and social structure of the environment favors the status
quo, often serving as a barrier to adaptation. Innovations may be difficult when costs and resulting sys-
tem performance are uncertain. [Roy et al., 2008; Brown and Farrelly, 2009]. However, most impediments to
innovation are social. Innovations may face barriers of social acceptance, such as the reuse of reclaimed
wastewater. Change in the built structure of the environment frequently entails changes to the social struc-
ture, particularly when shifting from centralized to decentralized designs. These changes may require new
institutional and governance frameworks, development of new standards and regulations, and allocation
of responsibilities that can alter the distribution of costs and benefits within society [Roy et al., 2008; van de
Meene et al., 2011].

3.2.4. Operational Water Use and Management

Given a particular structural context, actors affect water quantity and quality directly via their operational
water use and management decisions (Figure 2, arrow D). At the smallest scale, individual decisions about
indoor and outdoor water use (both residential and agricultural) can be aggregated to comprise the
“demand” for water that directly impacts the quantity and quality of water in the system across temporal
and spatial scales. Individual homeowners, residents, farmers, and ranchers make water use decisions, such
as when and how to irrigate their property. These individuals also decide how much fertilizer to apply to
their landscape and how to dispose of unwanted substances such as paint and pharmaceuticals—decisions
with implications for water quality. At larger scales, short-term operational decisions about the manage-
ment of built water systems by municipalities, conservancy districts, and reservoir managers also have a
direct influence on patterns of water availability and use. The volume, timing, duration, and purpose of
operations depend on the goals of the actor and intended water use(s) [Loucks et al., 2005]. For example,
an irrigation company may divert river water during the summer to allow farmers to irrigate, whereas
an environmental organization may prefer the diversion of water in the fall low-flow season to maintain
wetland or in-stream habitat [Downard and Endter-Wada, 2013; Welsh et al., 2013].

Nearly all water management decisions by actors are enabled or constrained by the natural, built, and social
structure that surrounds them. These linkages are discussed in Section 3.2.7.

3.2.5. The Role of Resource Access and Risk

The structure of the environment—natural, built, and social—affects actors’ access to resources and the
risks they face (Figure 2, arrow E). Resources include a wide range of materials, information, knowledge,
and social and financial capital. Access is determined by sets of norms, rules, physical proximity, and other
attributes of structure. Structure shapes which actors (individual or organizational) can use resources when
and in what quantities. For example, individual water right allocations, as well as state-determined alloca-
tion caps, define access to water resources. At the same time, information can be limited by the structure of
knowledge systems available to actors (e.g., policy makers do not commonly have access to scientific journal
articles). Norms also determine how resources are used [Ostrom et al., 1999]. For example, covenants, codes,
and restrictions set by homeowner associations or municipalities set limitations on landscaping by home-
owners or determine the types of storm water management systems that can be built in new developments.
In this way, social structure interacts with natural and built structure to enable or constrain individuals’ and
organizations’ access to material resources as well as their ability to act or change related structures [Larson
et al., 2009].

Risk refers to the combined magnitude and probability of loss (e.g., of life or property) actors may expe-
rience from uncertain conditions manifested through natural, built, and social structure [Eakin and Luers,
2006]. Actors also have varying exposure, sensitivity, and capacity to adapt to these risks [Eakin and Luers,
2006; Zahran et al., 2008; Eakin et al., 2010]. For example, the risk of loss due to flooding is influenced by nat-
ural structure, such as topography and hydrology, and built structure, such as reservoirs and levees, storm
water drainage, and housing construction and contents. The risk of loss from flooding is also influenced by
the presence or absence of social structures such as flood mitigation policies and actors’ access to social and
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political resources [Zahran et al., 2008; Eakin et al., 2010]. Risk of loss of life and property has also been tied to
properties of the actors themselves, such as socioeconomic status. For example, minorities and the poor are
less likely to receive, believe, or be prepared for emergency warnings, less likely to evacuate during emer-
gencies, or to have flood or emergency insurance. These communities are also more likely to live in high-risk
areas [Zahran et al., 2008; Eakin et al., 2010]. Other important water-related risks include (but are not limited
to) water scarcity and drought, water pollution, and the loss of economically important ecosystems due to
water pollution [Endter-Wada et al., 2009; Srinivasan et al., 2012].

3.2.6. The Role of Perceptions, Information, and Experience

With respect to water-related behaviors, the decisions of water actors are fundamentally shaped by their
awareness of water quality and quantity and the structure of their water system (Figure 2, arrow F). Aware-
ness is represented by the perceptions, information, and experiences (PIE) that encompass the many ways
in which actors become aware of and make sense of their world. Perception refers to how people interpret
sensory information, such as the high water mark during a flood or the taste of drinking water. Experience
refers to observational knowledge gained from involvement with or exposure to something or some event,
such as basement flooding during snowmelt events or the loss of crops as a result of drought. Information
is knowledge obtained through more formal channels such as formal education, scientific instruments and
sensors, publications, mass media, or the “situated knowledge” of laypeople or nonscientists [Irwin, 2001;
Endter-Wada et al., 2009]. Thus the PIE arrows represent feedbacks that actors receive from the water system
and incorporate into their decision-making.

Social structure can significantly enable or constrain the flow of information to different actors. Most actors
are not fully aware of the water system and make decisions with limited, imperfect, and uncertain informa-
tion. Actors enabled by structure can influence the water system knowingly, based on how they perceive
and experience water and make sense of related information. Actors can also influence water inadvertently
or without direct intent. Actors’ water decisions frequently reflect incomplete awareness of the status of or
changes in water quality and quantity. Indeed, many water system outcomes reflect the unintended con-
sequences of choices made with limited and contextualized information about the larger integrated water
system.

3.2.7. Structural Impacts on Actors

In our conceptual model, actors make important water management decisions seeking to have direct
effects on water quantity and quality. As noted above, people do not act in a vacuum, and their operational
water management decisions are enabled or constrained by the natural, built, and social structure of
the environment. Our framework thus includes a “constraining/enabling” arrow from structure to water
management (Figure 2, arrow G) that reflects the ways in which different configurations of structure affect
water management decisions and behaviors.

For example, individuals and organizations operate the built structure by specifying the timing, volume, and
duration of diversions, withdrawals, releases, and treatment. Typically, these operations are constrained by
the physical attributes of the existing built structure such as location, capacity, and operational costs. Sim-
ilarly, at the parcel scale, residential and institutional landscape irrigation is strongly related to the built
landscape including the technology used to apply the water, as when manual hand watering leads to more
water conservation than programmed sprinklers [Endter-Wada et al., 2008; Kilgren et al., 2010]. Social struc-
ture at many scales also affects operations and management. For example, state prior appropriation law
defines the volume, timing, and location of all water withdrawals as well as the beneficial use(s) to which
water can be put. The range of people’s water use decisions is constrained by water law and negotiated set-
tlements within the legal structure [Endter-Wada et al., 2009]. At the neighborhood scale, social norms such
as when nearby urban or agricultural users can divert water from a canal can influence individual water
behaviors [Endter-Wada et al., 2008]. The cultural and institutional dimensions of social structure gener-
ate lines of social difference (e.g., class, race, and gender) that affect the relative power held by different
individuals and groups depending on their social position and have consequences for the distribution of
water resources and the ability to make and implement water-relevant management decisions [Molle, 2007].
For example, farmers who have historically used irrigation system water may be allowed greater flexibility
in their water use decisions than residents of newly constructed housing. Although not illustrated in the
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diagram, all components of structure can also constrain the perceptions, information, and experiences of
actors, as noted above in Section 3.2.6.

3.2.8. External Structure, Drivers, and Responders

No study system is isolated, and human–water systems interact with numerous external structures, drivers,
and responders (Figure 2). We define as external any variables that differ from the study system in: (1) spatial
scale, (2) location, (3) time, or (4) domain. In terms of geographic scale, changes in markets, law, policy, or
climate at the state, regional, national, or global scale can have important implications for a watershed-scale
system but are best viewed as exogenous to the core dynamics of the water system in our framework. While
we are used to thinking of processes at different spatial and temporal scales as being external drivers of a
study system [e.g., Peters et al., 2007], systems at the same spatial scale but separated in space may also act
as external drivers through flows of material, information, or people. These systems are often referred to as
“teleconnected” [Adger et al., 2009; Seto et al., 2012]. For example, dust from a distant ecosystem deposited
on local snowpack can alter the timing of snowmelt [Painter et al., 2007, 2010]. Legacies such as historic
land-use patterns, for example, have been shown to be important drivers of ecosystem structure and func-
tion [Foster et al., 2003]. A similar concept is that of path dependence, which suggests that system trajecto-
ries are self-reinforcing and therefore contingent on past states [Pierson, 2000; Martin and Sunley, 2006].
Water systems are also affected by processes occurring in other domains. A key example of this is the
water-energy nexus, which describes the energy cost of treating and distributing water and the water cost
of producing energy [Sovacool and Sovacool, 2009; Abdallah and Rosenberg, 2014]. With population growth
and increased demands for both energy and water, energy sector is expected to place a larger demand on
water supply and supplying water will require higher energy inputs [Sovacool and Sovacool, 2009; Utah Divi-
sion of Water Resources, 2012]. Finally, external variables can also be responders in addition to drivers—for
example, irrigation, by reducing local air temperatures through evaporation, can feed back to alter larger
scale climate patterns [Lobell et al., 2009; Puma and Cook, 2010]. External drivers may interact with or affect
any or all aspects of water systems. For example, external climate patterns can affect water quantity or
quality outcomes by altering hydrologic and biogeochemical processes (e.g., by altering snowpack, or tem-
perature changes may alter rates of key biogeochemical processes). Climate can also affect water outcomes
via changes to actors’ perceptions of water scarcity and, therefore, water use patterns. Because our frame-
work is designed to be general and applicable across scales, features that are internal to one study system
may be viewed as external drivers in another. Important external drivers with regard to water systems could
include: climate, ecological disturbances, human population and demographic shifts, economics, and reg-
ulations.

4. Applying the Framework to Research Examples

We present two case studies in which we have applied the framework to Utah-focused research activities
and show how the framework helped to generate new, overarching interdisciplinary research questions,
formulate hypotheses, and synchronize project activities including data collection to test the hypotheses.
In the case studies, the framework also allowed researchers to situate their individual research activities
within the larger project and water system. The two case studies are: (1) understanding urban water supply
and demand in a changing climate and (2) expanding use of green storm water infrastructure in a semi-arid
environment. Our discussion of these cases in the text focuses on highlighting the application and utility
of the framework in deepening and broadening the resulting research questions. Tables 1 and 2 compare
previously defined research questions with those generated after using the framework.

4.1. Urban Water Supply and Demand in a Changing Climate

Managing changes in water supply and demand is a major challenge facing decision-makers in the urbaniz-
ing American West. Increasing urbanization and corresponding changes to agricultural land use are affect-
ing demand for potable and irrigation water [Udall, 2013]. Meanwhile, a shift in precipitation from winter
snow to rainfall, coupled with an earlier snowmelt, has significant implications for the timing and volume
of water supply and water availability [Barnett et al., 2008; Gillies et al., 2012]. The scope of water supply
and demand research is broad, spanning many disciplinary perspectives and scales. Here, we focus on two
aspects of urban water supply and demand research to illustrate how the application of the iSAW frame-
work can identify new research questions and hypotheses. Specifically, we map onto the framework both
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Figure 3. Research questions for water supply and demand overlaid on the iSAW framework. Questions in boxes with dashed borders
are the original project research questions developed before the framework, whereas questions in boxes with solid borders were
generated using the framework. Only the questions addressed in the text are shown (see Table 1 for a complete list of research
questions).

the (i) original project questions regarding water supply and demand in the study region within the frame-
work and (ii) the additional questions that emerged while researchers worked with the framework (Figure 3,
Table 1). The comparison shows the value added by the framework to conduct more synthesis-oriented and
integrated water supply and demand research.

A major focus of prior water supply and demand research and our original research questions was under-
standing the role of external drivers—particularly climate changes as they affect the supply of water [Vörös-
marty et al., 2000; Barsugli et al., 2012; Bardsley et al., 2013; Udall, 2013] and urbanization and population
growth as they affect the demand for water resources [Vörösmarty et al., 2000; Udall, 2013]. As mentioned
above, in Utah and the Intermountain West in general, climate change is anticipated to have important con-
sequences for water supply. Thus, the original project research questions asked: How will water resources
change as a result of climate change via changes to the timing and amount of snowpack (Figure 3 and
Table 1, Q1)? and How will climate change affect forest composition and the risk of fire and beetle infestation
(Figure 3 and Table 1, Q2)? However, by examining regional water supply and demand within the context
of the iSAW framework, we identified an additional research question of how climate would affect water
demand (Figure 3 and Table 1, Q18). Importantly, climate changes could affect water demand through both
biophysical and social mechanisms. Climate can exacerbate the microclimate effects of urbanization (often
referred to as the “urban heat island” effect), increasing evaporative demand and the need for outdoor
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irrigation [Bardsley et al., 2013]. Climate change could also affect water demand if actors’ perceptions, infor-
mation, and experiences of climate change affect their water-related behaviors [Barsugli et al., 2012]. These
behaviors could include watering and landscaping behaviors of urban residents, changes in water infras-
tructure systems (e.g., reservoirs, inter-basin transfers), and changes in formal or informal water law, policy,
or institutions. By recognizing that actors’ perceptions and behaviors may shift in response to climate (in
addition to biophysical changes), researchers can take a more comprehensive approach to addressing how
climate affects all aspects of the system. In this example, the iSAW framework allowed the project team to
consider a broader set of climate impacts on the integrated system.

Another original research question addressed how natural and built structure affected water management:
How do population density, parcel size, vegetation, impervious surfaces, water and built infrastructure,
microclimate, and landscaping practices affect water use (Figure 3 and Table 1, Q17)? Previous research
has shown that water use at the city or neighborhood scale is dependent upon these physical features of
urban form [Shandas and Parandvash, 2010; Grafton et al., 2011; House-Peters and Chang, 2011; Stoker and
Rothfeder, 2014]. As we applied these research questions to the iSAW framework, we observed that we could
go beyond natural and built structure to also investigate the role of social structure by asking: How does
social structure affect water access (i.e., supply) and therefore water use behaviors (i.e., demand) (Figure 3
and Table 1, Q26)? Delivery systems, water pricing, and water rights law can act as enablers or constraints
on actors’ water use and management decisions by limiting their physical or legal access to water—i.e.,
their water supply [Huffaker et al., 2000; Hearne, 2007; Welsh et al., 2013]. For example, high water prices
can limit the effective supply of water for those who are unable to pay [Ruijs et al., 2008]. Water use—i.e.,
demand—is also likely to be affected by social structures, including norms [Endter-Wada et al., 2008; Russell
and Fielding, 2010] and water pricing [Olmstead et al., 2007; Klaiber et al., 2014]. For example, social norms
have been shown to be significant predictors of attitudes toward water conservation and intentions to use
less water or install water-efficient appliances [Russell and Fielding, 2010]. In this example, the framework
allowed researchers to build upon existing research linking water demand and urban form to consider
aspects of social structure as an enabler or a constraint of both water supply and water demand.

Overall, we used the iSAW framework to more broadly delineate the external drivers and explore how they
might affect all aspects of the integrated system. We also found that by considering natural, built, and social
structure components of the system, we can more explicitly link and describe the interplay between water
supply and demand in the coupled system. With this synthesis view, the iSAW framework helped guide the
development of specific research questions and data collection.

4.2. Green Storm Water Infrastructure in a Semi-arid Region

Green infrastructure (GI) is the decentralized, interconnected networks of natural and constructed
plant–soil systems within, around, and between urban areas [Tzoulas et al., 2007]. GI can include many
aspects of the urban environment such as open space, parks, green roofs, storm water and wastewater
conveyance and treatment systems, distributed energy generation, and riparian areas. For the purposes
of this example, we focus on GI to manage storm water, which includes features such as retention and
detention basins, treatment wetlands, green roofs, green streets, rain gardens, and bioswales. Storm water
GI is used for a range of management objectives, including reducing storm water flow (either by detaining
or infiltrating storm water runoff) and managing storm water pollution through biogeochemical treatment
[National Research Council, 2008; Davis et al., 2009; Houdeshel et al., 2012].

There is widespread interest to expand the use of GI for storm water management by academics, practition-
ers, and the EPA [Davis et al., 2009; Houdeshel et al., 2012]. However, most of the research on storm water GI
has been conducted in humid regions, and there is limited information about how these systems function
in semi-arid environments such as Utah [Davis et al., 2009; Houdeshel et al., 2012]. Furthermore, there is lit-
tle understanding of the barriers and opportunities that exist for implementing GI or transitioning existing
storm water systems to GI [Brown et al., 2013; Keeley et al., 2013; Schaeffler and Swilling, 2013]. The origi-
nal objectives of our GI research focused on understanding: (1) how GI designs affected water quality and
quantity outcomes, (2) how to design GI for sustainability, and (3) identification of the barriers and paths
to GI implementation (Figure 4). Similar to the water supply and demand example, the iSAW framework
helped refocus and facilitate more integrated research to identify the: (1) external drivers of the integrated
GI system and (2) mechanisms affecting GI implementation.
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Figure 4. Research questions for storm water green infrastructure (GI). Questions in boxes with dashed borders are the original project
research questions developed before the framework, whereas questions in boxes with solid borders were generated using the
framework. Only the questions addressed in the text are shown (see Table 2 for a complete list of research questions).

Our original research questions listed in the project proposal did not address the importance of external
drivers to the use and performance of GI (Figure 4 and Table 2). As we applied these questions to the iSAW
framework, we identified external drivers that were likely to be important factors shaping both GI function
and implementation (Figure 4 and Table 2, Q4–Q6). For example, climate variation, either within an urban
area or over time, could have important implications for GI function (Figure 4, Q4). Consideration of climate
is also important for designing locally appropriate infrastructure, and a key challenge in arid regions is to
design GI features that can adequately address storm water quality and quantity, while minimizing the need
for irrigation to maintain vegetation between storms [Houdeshel et al., 2012]. To test GI designs and under-
stand the mechanisms linking design to storm water quantity and quality outcomes, project researchers are
using a combination of controlled experimental research and in situ observation of GI in the urban study
areas (Table 2, Q1). Here, the research questions focus on how built structures (the storm water GI itself )
and natural structures (i.e., soil infiltration capacity, vegetation) interact to shape water quality and quan-
tity outcomes. Previous research has found that external drivers, such as storm characteristics, can have
important implications for watershed-scale nutrient retention in arid cities [Lewis and Grimm, 2007; Hale
et al., 2015]. Although there have been no studies specifically looking at GI performance across different
climate conditions, both precipitation and temperature are expected to affect GI water balances (e.g., via
evapotranspiration) and biogeochemical transformation rates.
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A different set of external drivers are also likely to be important for understanding the pace and location
of GI implementation. Storm water policies [e.g., U.S. Environmental Protection Agency (US EPA), 2014] could
encourage cities and private actors to adopt GI (Table 2, Q5). Infrastructure legacies, on the other hand,
could be a major barrier to GI implementation (Table 2, Q6). In large cities with extensive, well-established
storm water infrastructure (e.g., storm sewer networks), there are technological, financial, and institutional
barriers to transitioning to a decentralized GI system [Keeley et al., 2013]. Legacies are also important for
understanding current storm water systems. For example, in many cities throughout Utah, irrigation canals
also serve as de facto storm water drainage ditches and have (often unintentionally) become a defining
feature of municipal storm water systems.

A second original research objective was to understand barriers and pathways to GI implementation
(Figure 4, Q3), but the project’s original hypotheses about the mechanisms of infrastructure transitions
were underdeveloped. In our conversations about the application of the iSAW framework, we developed
several hypotheses and more specific research questions that explore how three system linkages might
influence the adoption of GI: (1) resource access, (2) perceptions, information, and experience, and (3)
external drivers. Resource access could shape infrastructure transitions in that infrastructure is expensive,
and, as a result, building infrastructure requires both financial capital and political support. In Utah, for
example, small cities with limited staff or budgets (i.e., social structures) tend to use GI in new residential
and commercial developments, where developers fund the use of these infrastructures. The perceptions,
information, and experiences of residents and storm water managers regarding storm water and GI can
be either a barrier or a pathway to GI implementation. One ongoing research project on historical transi-
tions in storm water infrastructure shows that flooding problems (i.e., people’s experiences) were a major
motivation toward installing a centralized storm sewer system (Hale, unpublished data). On the other
hand, transitions are unlikely to occur when residents and managers are not aware of or concerned about
problems with storm water quality or quantity. These linkages have informed our data collection efforts
and a project working group is currently conducting surveys of storm water managers and households to
understand how these two groups of actors perceive GI and whether they see or have experienced risk
associated with storm water quantity or quality.

As illustrated in Table 2 and Figure 4, our original conception of storm water was narrow and focused
on implementation, design, and function. Exploring GI within the context of the iSAW framework helped
develop specific hypotheses regarding GI implementation (Q8 and Q10, Figure 4) while also suggesting
mechanisms for feedback between GI function and implementation (Q10, Figure 4). Furthermore, consid-
ering all GI research within the iSAW framework has facilitated connections between social (transitions to
GI) and engineering (design of GI) aspects of the research. For example, results from storm water manager
surveys and interviews have grounded storm water GI design research in the real constraints experienced
within Utah municipalities (e.g., operations and maintenance costs, desire to be a good steward). Absent this
connection to local survey research, work on GI design would have relied on existing information about the
experiences of managers from more humid or larger cities. As with the water supply and demand example,
the iSAW framework helped develop more targeted research questions, facilitating research coordination
and data collection.

5. Applicability to Other Locations and Issues

While iSAW was developed within the context of Utah water issues, the framework can be readily applied
to other regions and natural resources. As illustrated by the water supply/demand and GI case studies,
the framework is sufficiently flexible to be applied across scales and domains. It can also be applied to
other natural resource issues, substituting the resource of interest (e.g., timber, energy, carbon, mineral
resources, or an individual species) for water. In building the framework, we note that water is a part of the
structure of the environment, but it has been made distinct from structure to highlight the quantity and
quality subcomponents and how they are measured, as well as the relationships that are most important
for water resources research. Frameworks organized around other resources could simply choose different
sub-components and relationships to pull out from structure and emphasize. Regardless of the resource
or focus, the framework highlights the importance of interdisciplinary research in natural resources and
facilitates communication and interaction among different domains and scientists.
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6. Conclusions

Water systems face many challenges in response to urbanization and climate change, including shifting
societal expectations, new regulations, increasing water demand, and ecosystem changes. More sustainably
managing water systems requires better understanding of the complex components and linkages in these
coupled systems. Despite a wealth of literature on human–water interactions, it can be difficult to integrate
this research across disciplinary perspectives. Coupled systems projects have struggled to systematically
incorporate social and natural scientific theories related to the roles of social, built, and natural structures
vis-à-vis the behaviors and decisions of key actors. Our framework advances upon previous conceptual
models of human–water systems by recognizing diverse actors and the complex behavior that emerges
from their individual actions and interactions as opposed to imposing aggregate- and community-scale
responses to the human system. Furthermore, our work provides an elaboration of how the social aspects
of coupled water systems should be represented not only by the behaviors of individual and organizational
actors but also specifying how their actions shape and are shaped by their integrated social-built-natural
structural contexts.

As a generalized conceptual model that identifies key biophysical and social components and linkages,
the iSAW framework provides a roadmap for coupled human–water systems research and can help guide
future interdisciplinary research to address water management problems and other natural resource
issues. Importantly, by designing the framework to be generalized, we have identified mechanisms of
human–water interactions that transcend domains and scales. In our own project, we found that a shared
conceptual framework was important to facilitate interdisciplinary collaborative research. Further, by
applying the framework to two case studies involving understanding water supply and demand in the face
of changing climate and promoting GI in an arid climate, the iSAW framework allowed project researchers
to develop much richer and synthesis-oriented research questions and hypotheses and formulate project
and data collection activities to start testing the generated questions. The two case studies also illustrate
the utility of the iSAW framework to: (1) develop a broader and deeper conceptualization of particular
research questions, (2) identify specific mechanisms driving processes of interest, and (3) identify gaps
in understanding. In the future, this framework can be used not only to facilitate our understanding
of human–water systems but also to develop solutions to important water issues. Importantly, the iSAW
framework is designed to be adapted to address water issues in other regions and natural resource domains
beyond water.
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