10 research outputs found

    CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance

    Get PDF
    Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo

    Treg and CTLA-4: Two intertwining pathways to immune tolerance.

    Get PDF
    Both the CTLA-4 pathway and regulatory T cells (Treg) are essential for the control of immune homeostasis. Their therapeutic relevance is highlighted by the increasing use of anti-CTLA-4 antibody in tumor therapy and the development of Treg cell transfer strategies for use in autoimmunity and transplantation settings. The CTLA-4 pathway first came to the attention of the immunological community in 1995 with the discovery that mice deficient in Ctla-4 suffered a fatal lymphoproliferative syndrome. Eight years later, mice lacking the critical Treg transcription factor Foxp3 were shown to exhibit a remarkably similar phenotype. Much of the debate since has centered on the question of whether Treg suppressive function requires CTLA-4. The finding that it does in some settings but not in others has provoked controversy and inevitable polarization of opinion. In this article, I suggest that CTLA-4 and Treg represent complementary and largely overlapping mechanisms of immune tolerance. I argue that Treg commonly use CTLA-4 to effect suppression, however CTLA-4 can also function in the non-Treg compartment while Treg can invoke CTLA-4-independent mechanisms of suppression. The notion that Foxp3 and CTLA-4 direct independent programs of immune regulation, which in practice overlap to a significant extent, will hopefully help move us towards a better appreciation of the underlying biology and therapeutic significance of these pathways

    Immunotherapy for melanoma

    No full text

    Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family

    No full text
    Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2)

    Immunotherapy for melanoma

    No full text

    Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family

    No full text
    corecore