2,506 research outputs found

    Unlocking Insights into Crop Growth and Nutrient Distribution: A Geospatial Analysis Approach Using Satellite Imagery and Soil Data

    Get PDF
    Accurate monitoring of crop growth and nutrient distribution is crucial for optimizing agricultural practices, promoting a sustainable environment, and ensuring long-term food production. In this study, we propose a novel and comprehensive approach to monitor crop growth and nutrient distribution in large-scale agricultural landscapes. Our methodology combines advanced geospatial and temporal analysis techniques, providing valuable insights into the intricate relationships between crop health, soil nutrients, and other essential soil properties. To monitor vegetation dynamics, we obtained data from the IBM EIS (Environment Intelligence Suite) and processed it using our HPC (High-Performance Computing) infrastructure. This is ingested into our CRADLE (Common Research Analytics and Data Lifecycle Environment). The IBM EIS consists of vast amounts of geospatial data curated from diverse sources, readily available for analysis. Leveraging the Normalized Difference Vegetation Index (NDVI) algorithm and MODIS Aqua satellite imagery, we classified vegetation on a daily basis, yielding a detailed assessment of land use and growth. Additionally, by integrating MODIS Aqua data with USDA Historical Crop planting data, we can identify the dominant crops in each region and monitor their growth and health across Texas and Ohio during 2019. To investigate soil properties and their influence on crop health, we utilize prominent soil databases from IBM EIS such as The Soil Survey Geographic Database (SSURGO) and the World Soil Information Service (WoSIS). These databases provide essential information on key soil properties, including pH, texture, water holding capacity, and organic carbon. By correlating these properties with soil nitrogen content, we can assess their interdependencies and infer their impacts on crop health. Furthermore, we analyze the correlation between crop health and nitrogen content, gaining valuable insights into the effects of soil nitrogen on crop well-being. By integrating remote sensing technology, soil science, and data science, this interdisciplinary study contributes to the development of sustainable agricultural management strategies. The findings of this research enhance food production capabilities and provide valuable information for policy decision-making, ultimately promoting environmental conservation within large-scale agricultural systems

    A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Get PDF
    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0.8), its relatively long period (P~238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (omega~189 degrees). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e~0.3). Only during the ~5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ~15 km/s reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.Comment: 16 pages, 11 figures, 6 table

    Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit

    Get PDF
    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of 0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (Teff ~< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be co-moving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.Comment: 22 pages; accepted in A

    MARVELS-1: A face-on double-lined binary star masquerading as a resonant planetary system; and consideration of rare false positives in radial velocity planet searches

    Get PDF
    We have analyzed new and previously published radial velocity observations of MARVELS-1, known to have an ostensibly substellar companion in a ~6- day orbit. We find significant (~100 m/s) residuals to the best-fit model for the companion, and these residuals are naively consistent with an interior giant planet with a P = 1.965d in a nearly perfect 3:1 period commensuribility (|Pb/Pc - 3| < 10^{-4}). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ~100 m/s residuals are an artifact of spectral contamination from a stellar companion contributing ~15-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected radial velocity companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.Comment: ApJ 770, 119. 24 pp emulate ApJ style, 12 figures (One is very large). v2: corrects two (important!) errors: A priori chance of this alignment or worse is 0.1% (not 0.01%) and the primary has THREE total companions (not four

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore