168 research outputs found

    Chemical abundances of late-type pre-main sequence stars in the σ\sigma-Orionis cluster

    Full text link
    The young σ\sigma-Orionis cluster is an important location for understanding the formation and evolution of stars, brown dwarfs, and planetary-mass objects. Its metallicity, although being a fundamental parameter, has not been well determined yet. We present the first determination of the metallicity of nine young late-type stars in σ\sigma-Orionis. Using the optical and near-infrared broadband photometry available in the literature we derive the effective temperatures for these nine cluster stars, which lie in the interval 4300--6500 K (1--3 \Msuno). These parameters are employed to compute a grid of synthetic spectra based on the code MOOG and Kurucz model atmospheres. We employ a χ2\chi^2-minimization procedure to derive the stellar surface gravity and atmospheric abundances of Al, Ca, Si, Fe, Ni and Li, using multi-object optical spectroscopy taken with WYFFOS+AF2 at at the William Herschel Telescope (λ/δλ7500\lambda/\delta\lambda\sim7500). The average metallicity of the σ\sigma-Orionis cluster is [Fe/H] =0.02±0.09±0.13 = -0.02\pm0.09\pm0.13 (random and systematic errors). The abundances of the other elements, except lithium, seem to be consistent with solar values. Lithium abundances are in agreement with the "cosmic" 7^7Li abundance, except for two stars which show a logϵ(Li)\log \epsilon(\mathrm{Li}) in the range 3.6--3.7 (although almost consistent within the error bars). There are also other two stars with logϵ(Li)2.75\log \epsilon(\mathrm{Li})\sim 2.75. We derived an average radial velocity of the σ\sigma-Orionis cluster of 28±428\pm4km/s. The σ\sigma-Orionis metallicity is roughly solar.Comment: Accepted for publication in Astronomy and Astrophysic

    El espinar esclerófilo de Aspargo Albi-Rhamnetum "bethurici" en el subsector Ribaduriense

    Get PDF
    The present work contributes ecological, floristic and phytosociological data about the sclerophilus thombush found in the association Asparago albi-Rhamnetum "bethurici" Ladero 1970 of the lower stratum of dry mesomediterranean bioclimatic level of the Ribaduriense subsector (Lusitano-Duriense sector), the nothermostlimit of its area.Se aportan datos ecológicos, floristicos y fitosociológicos acerca del espinar esclerófilo comprendido en la asociación Asparago albi-Rhannetum "bethurici" Ladero 1970 del horizonte inferior del piso bioclimático mesomediterráneo seco en el Subsector Ribaduriense (Sector Lusitano-Duriense), limite septentrional de su área

    Candidate free-floating super-Jupiters in the young sigma Orionis open cluster

    Full text link
    Free-floating substellar candidates with estimated theoretical masses of as low as ~5 Jupiter masses have been found in the ~3 Myr old sigma Orionis open cluster. As the overlap with the planetary mass domain increases, the question of how these objects form becomes important. The determination of their number density and whether a mass cut-off limit exists is crucial to understanding their formation. We propose to search for objects of yet lower masses in the cluster and determine the shape of the mass function at low mass. Using new- and (re-analysed) published IZJHKs[3.6]-[8.0]-band data of an area of 840 arcmin2, we performed a search for LT-type cluster member candidates in the magnitude range J=19.5-21.5 mag, based on their expected magnitudes and colours. Besides recovering the T type object S Ori 70 and two other known objects, we find three new cluster member candidates, S Ori 72-74, with J=21 mag and within 12 arcmin of the cluster centre. They have theoretical masses of 4 (-2,+3) M_Jup and are among the least massive free-floating objects detected by direct imaging outside the Solar System. The photometry in archival Spitzer [3.6]-[5.8]-band images infers that S Ori 72 is an L/T transition candidate and S Ori 73 a T-type candidate, following the expected cluster sequence in the mid-infrared. Finally, the L-type candidate S Ori 74 with lower quality photometry is located at 11.8 arcsec (~4250 AU) of a stellar member of sigma Orionis and could be a companion. After contaminant correction in the area complete to J=21.1 mag, we estimate that there remain between zero and two cluster members in the mass interval 6-4 M_Jup. Our result suggests a possible turnover in the substellar mass spectrum below ~6 Jupiter masses, which could be investigated further by wider and deeper photometric surveys.Comment: 15 pages, 13 figures, 5 tables, and appendix containing 5 figures; accepted for publication in AA; v2: 2 minor corrections, in abstract and sect. 2.

    A census of very-low-mass stars and brown dwarfs in the sigma Orionis cluster

    Full text link
    (ABRIDGED) We have analysed the near-infrared photometric data from the Fourth Data Release (DR4) of the UKIRT Infrared Deep Sky Suvey (UKIDSS) Galactic Clusters Survey (GCS) to derive the cluster luminosity and mass functions, evaluate the extent of the cluster, and study the distribution and variability of low-mass stars and brown dwarfs down to the deuterium-burning limit. We have recovered most of the previously published members and found a total of 287 candidate members within the central 30 arcmin in the 0.5-0.009 Msun mass range, including new objects not previously reported in the literature. This new catalogue represents a homogeneous dataset of brown dwarf member candidates over the central 30 arcmin of the cluster. The expected photometric contamination by field objects with similar magnitudes and colours to sigma Orionis members is ~15%. We present evidence of variability at the 99.5% confidence level over ~yearly timescales in 10 member candidates that exhibit signs of youth and the presence of disks. The level of variability is low (<0.3 mag) and does not impact the derivation of the cluster luminosity and mass functions. Furthermore, we find a possible dearth of brown dwarfs within the central five arcmin of the cluster, which is not caused by a lower level of photometric sensitivity around the massive, O-type multiple star sigma Ori in the GCS survey. Using state-of-the-art theoretical models, we derived the luminosity and mass functions within the central 30 arcmin from the cluster centre, with completeness down to J = 19 mag, corresponding to masses ranging from 0.5 Msun down to the deuterium-burning mass boundary (~0.013 Msun). The mass function of sigma Orionis in this mass interval shows a power law index alpha = 0.5+/-0.2.Comment: 16 pages, 10 figures, 4 Tables, and appendix containing 6 tables including tables in electronic format only. Revised version corrected for english. Table 4 has been updated and correcte

    New constraints on the membership of the T dwarf S Ori 70 in the sigma Orionis cluster

    Full text link
    (Abridged) The nature of S Ori 70, a faint mid-T type object found towards the direction of the young sigma Orionis cluster, is still under debate. We intend to disentangle whether it is a field brown dwarf or a 3-Myr old planetary-mass member of the cluster. We report on near-infrared JHK_s and mid-infrared [3.6] and [4.5] IRAC/Spitzer photometry recently obtained for S Ori 70. The new near-infrared images (taken 3.82 yr after the discovery data) have allowed us to derive a very small proper motion (11.0 +/- 5.9 mas/yr) for this object, which is consistent with the proper motion of the cluster within 1.5 sigma the astrometric uncertainty. The colors (H-K_s), (J-K_s) and K_s-[3.6] appear discrepant when compared to T4-T7 dwarfs in the field. This behavior could be ascribed to a low-gravity atmosphere or alternatively to an atmosphere with a metallicity significantly different than solar. Taking into account the small proper motion of S Ori 70 and its new near- and mid-infrared colors, a low-gravity atmosphere remains as the most likely explanation to account for our observations. This supports S Ori 70's membership in sigma Orionis, with an estimated mass in the interval 2-7 Mjup, in agreement with our previous derivation.Comment: Accepted for publication in A&

    Characterization of the K2-38 planetary system: Unraveling one of the densest planets known to date

    Get PDF
    .-- Toledo-Padrón, B. et al.Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with Pb = 4.01593 ± 0.00050 d and Pc = 10.56103 ± 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, Teff = 5731 ± 66, log g = 4.38 ± 0.11 dex, and [Fe/H] = 0.26 ± 0.05 dex, and thus the mass and radius of K2-38, Ma = 1.03-0.02+0.04 MaS and Ra = 1.06-0.06+0.09 RaS. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with RP = 1.54 ± 0.14 RaS and Mp = 7.3-1.0+1.1 MaS, and K2-38c as a sub-Neptune with RP = 2.29 ± 0.26 RaS and Mp = 8.3-1.3+1.3 MaS. Combining the radius and mass measurements, we derived a mean density of ρp = 11.0-2.8+4.1 g cm-3 for K2-38b and ρp = 3.8-1.1+1.8 g cm-3 for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    ESPRESSO: The next European exoplanet hunter

    Full text link
    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coud\'e Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coud\'e trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm/s level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.Comment: 12 pages, figures included, accepted for publication in Astron. Nach

    A new L-dwarf member of the moderately metal-poor triple system HD 221356

    Full text link
    We report on the discovery of a fourth component in the HD 221356 star system, previously known to be formed by an F8V, slightly metal-poor primary ([Fe/H]=-0.26), and a distant M8V+L3V pair. In our ongoing common proper motion search based on VISTA Hemisphere Survey (VHS) and 2MASS catalogues, we have detected a faint (J=13.76+/-0.04 mag) co-moving companion of the F8 star located at angular separation of 12.13+/-0.18 arcsec (position angle of 221.8+/-1.7), corresponding to a projected distance of ~312 AU at 26 pc. Near-infrared spectroscopy of the new companion, covering the 1.5-2.4 micron wavelength range with a resolving power of R~600, indicates an L1+/-1 spectral type. Using evolutionary models the mass of the new companion is estimated at ~0.08 solar masses, which places the object close to the stellar-substellar borderline. This multiple system provides an interesting example of objects with masses slightly above and below the hydrogen burning mass limit. The low mass companions of HD 221356 have slightly bluer colours than field dwarfs with similar spectral type, which is likely a consequence of the sub-solar metallicity of the system.Comment: 7 pages, 4 figures, accepted for publication in MNRA
    corecore