423 research outputs found

    Risk Adjustment In Neurocritical care (RAIN)--prospective validation of risk prediction models for adult patients with acute traumatic brain injury to use to evaluate the optimum location and comparative costs of neurocritical care: a cohort study.

    Get PDF
    OBJECTIVES: To validate risk prediction models for acute traumatic brain injury (TBI) and to use the best model to evaluate the optimum location and comparative costs of neurocritical care in the NHS. DESIGN: Cohort study. SETTING: Sixty-seven adult critical care units. PARTICIPANTS: Adult patients admitted to critical care following actual/suspected TBI with a Glasgow Coma Scale (GCS) score of < 15. INTERVENTIONS: Critical care delivered in a dedicated neurocritical care unit, a combined neuro/general critical care unit within a neuroscience centre or a general critical care unit outside a neuroscience centre. MAIN OUTCOME MEASURES: Mortality, Glasgow Outcome Scale - Extended (GOSE) questionnaire and European Quality of Life-5 Dimensions, 3-level version (EQ-5D-3L) questionnaire at 6 months following TBI. RESULTS: The final Risk Adjustment In Neurocritical care (RAIN) study data set contained 3626 admissions. After exclusions, 3210 patients with acute TBI were included. Overall follow-up rate at 6 months was 81%. Of 3210 patients, 101 (3.1%) had no GCS score recorded and 134 (4.2%) had a last pre-sedation GCS score of 15, resulting in 2975 patients for analysis. The most common causes of TBI were road traffic accidents (RTAs) (33%), falls (47%) and assault (12%). Patients were predominantly young (mean age 45 years overall) and male (76% overall). Six-month mortality was 22% for RTAs, 32% for falls and 17% for assault. Of survivors at 6 months with a known GOSE category, 44% had severe disability, 30% moderate disability and 26% made a good recovery. Overall, 61% of patients with known outcome had an unfavourable outcome (death or severe disability) at 6 months. Between 35% and 70% of survivors reported problems across the five domains of the EQ-5D-3L. Of the 10 risk models selected for validation, the best discrimination overall was from the International Mission for Prognosis and Analysis of Clinical Trials in TBI Lab model (IMPACT) (c-index 0.779 for mortality, 0.713 for unfavourable outcome). The model was well calibrated for 6-month mortality but substantially underpredicted the risk of unfavourable outcome at 6 months. Baseline patient characteristics were similar between dedicated neurocritical care units and combined neuro/general critical care units. In lifetime cost-effectiveness analysis, dedicated neurocritical care units had higher mean lifetime quality-adjusted life-years (QALYs) at small additional mean costs with an incremental cost-effectiveness ratio (ICER) of ÂŁ14,000 per QALY and incremental net monetary benefit (INB) of ÂŁ17,000. The cost-effectiveness acceptability curve suggested that the probability that dedicated compared with combined neurocritical care units are cost-effective is around 60%. There were substantial differences in case mix between the 'early' (within 18 hours of presentation) and 'no or late' (after 24 hours) transfer groups. After adjustment, the 'early' transfer group reported higher lifetime QALYs at an additional cost with an ICER of ÂŁ11,000 and INB of ÂŁ17,000. CONCLUSIONS: The risk models demonstrated sufficient statistical performance to support their use in research but fell below the level required to guide individual patient decision-making. The results suggest that management in a dedicated neurocritical care unit may be cost-effective compared with a combined neuro/general critical care unit (although there is considerable statistical uncertainty) and support current recommendations that all patients with severe TBI would benefit from transfer to a neurosciences centre, regardless of the need for surgery. We recommend further research to improve risk prediction models; consider alternative approaches for handling unobserved confounding; better understand long-term outcomes and alternative pathways of care; and explore equity of access to postcritical care support for patients following acute TBI. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material

    Get PDF
    A calcium aluminate-based endodontic material, EndoBinder, has been developed in order to reduce MTA negative characteristics, preserving its biological properties and clinical applications. OBJECTIVES: The aim of this study was to evaluate the cytotoxicity, antimicrobial activity, pH, solubility and water sorption of EndoBinder and to compare them with those of white MTA (WMTA). MATERIAL AND METHODS: Cytotoxicity was assessed through a multiparametric analysis employing 3T3 cells. Antimicrobial activity against Enterococcus faecalis (ATCC 29212), Staphylococcus aureus. (ATCC 25923) and Candida albicans (ATCC 10556) was determined by the agar diffusion method. pH was measured at periods of 3, 24, 72 and 168 hours. Solubility and water sorption evaluation were performed following ISO requirements. Data were statistically analyzed by ANOVA and Tukey`s test with a significance level of 5%. RESULTS: EndoBinder and WMTA were non-cytotoxic in all tested periods and with the different cell viability parameters. There was no statistical differences between both materials (P>.05). All tested materials were inhibitory by direct contact against all microbial strains tested. EndoBinder and WMTA presented alkaline pH in all tested times with higher values of pH for WMTA (P<.05). Both materials showed values complying with the solubility minimum requirements. However, EndoBinder showed lower solubility than WMTA (P<.05). No statistical differences were observed regarding water sorption (P>.05). CONCLUSION: Under these experimental conditions, we concluded that the calcium aluminate-based endodontic material EndoBinder demonstrated suitable biological and physicochemical properties, so it can be suggested as a material of choice in root resorption, perforations and root-end filling

    Visualizing the atomic scale electronic structure of the Ca2CuO2Cl2 Mott insulator

    Full text link
    Although the mechanism of superconductivity in the cuprates remains elusive, it is generally agreed that at the heart of the problem is the physics of doped Mott insulators. The cuprate parent compound has one unpaired electron per Cu site, and is predicted by band theory to be a half-filled metal. The strong onsite Coulomb repulsion, however, prohibits electron hopping between neighboring sites and leads to a Mott insulator ground state with antiferromagnetic (AF) ordering. Charge carriers doped into the CuO2 plane destroy the insulating phase and superconductivity emerges as the carrier density is sufficiently high. The natural starting point for tackling high Tc superconductivity is to elucidate the electronic structure of the parent Mott insulator and the behavior of a single doped charge. Here we use a scanning tunneling microscope to investigate the atomic scale electronic structure of the Ca2CuO2Cl2 parent Mott insulator of the cuprates. The full electronic spectrum across the Mott-Hubbard gap is uncovered for the first time, which reveals the particle-hole symmetric and spatially uniform Hubbard bands. A single electron donated by surface defect is found to create a broad in-gap electronic state that is strongly localized in space with spatial characteristics intimately related to the AF spin background. The unprecedented real space electronic structure of the parent cuprate sheds important new light on the origion of high Tc superconductivity from the doped Mott insulator perspective.Comment: 26 pages, 4 figures, supplementary information include

    Estimation of lung vital capacity before and after coronary artery bypass grafting surgery: a comparison of incentive spirometer and ventilometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measurement of vital capacity (VC) by spirometry is the most widely used technique for lung function evaluation, however, this form of assessment is costly and further investigation of other reliable methods at lower cost is necessary. Objective: To analyze the correlation between direct vital capacity measured with ventilometer and with incentive inspirometer in patients in pre and post cardiac surgery.</p> <p>Methodology</p> <p>Cross-sectional comparative study with patients undergoing cardiac surgery. Respiratory parameters were evaluated through the measurement of VC performed by ventilometer and inspirometer. To analyze data normality the Kolmogorov-Smirnov test was applied, for correlation the Pearson correlation coefficient was used and for comparison of variables in pre and post operative period Student's t test was adopted. We established a level of ignificance of 5%. Data was presented as an average, standard deviation and relative frequency when needed. The significance level was set at 5%.</p> <p>Results</p> <p>We studied 52 patients undergoing cardiac surgery, 20 patients in preoperative with VC-ventilometer: 32.95 ± 11.4 ml/kg and VC-inspirometer: 28.9 ± 11 ml/Kg, r = 0.7 p < 0.001. In the post operatory, 32 patients were evaluated with VC-ventilometer: 28.27 ± 12.48 ml/kg and VC-inspirometer: 26.98 ± 11 ml/Kg, r = 0.95 p < 0.001. Presenting a very high correlation between the evaluation forms studied.</p> <p>Conclusion</p> <p>There was a high correlation between DVC measures with ventilometer and incentive spirometer in pre and post CABG surgery. Despite this, arises the necessity of further studies to evaluate the repercussion of this method in lowering costs at hospitals.</p

    In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin

    Get PDF
    Background: The lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as repolymerization of phenolic products occurs simultaneously at neutral pH. Because repolymerization of phenolics is repressed at acidic pH, a highly acid-stable LiPH8 could accelerate the selective depolymerization of recalcitrant lignin. Results: The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from Phanerochaete chrysosporium and acid-stable manganese peroxidase isozyme 6 (MnP6) from Ceriporiopsis subvermispora. Effective salt bridges were probed by molecular dynamics simulation and changes to Gibbs free energy following mutagenesis were predicted, suggesting promising variants with higher stability under extremely acidic conditions. The rationally designed variant, A55R/N156E-H239E, demonstrated a 12.5-fold increased half-life under extremely acidic conditions, 9.9-fold increased catalytic efficiency toward veratryl alcohol, and a 7.8-fold enhanced lignin model dimer conversion efficiency compared to those of native LiPH8. Furthermore, the two constructed salt bridges in the variant A55R/N156E-H239E were experimentally confirmed to be identical to the intentionally designed LiPH8 variant using X-ray crystallography (PDB ID: 6A6Q). Conclusion: Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Genetic and Chemical Modifiers of a CUG Toxicity Model in Drosophila

    Get PDF
    Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments
    • 

    corecore