197 research outputs found

    Sapling size influences shade tolerance ranking among southern boreal tree species

    Get PDF
    1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Bending the Curve in Cardiovascular Disease Mortality: Bethesda + 40 and beyond

    Get PDF
    More than 40 years after the 1978 Bethesda Conference on the Declining Mortality from Coronary Heart Disease provided the scientific community with a blueprint for systematic analysis to understand declining rates of coronary heart disease, there are indications the decline has ended or even reversed despite advances in our knowledge about the condition and treatment. Recent data show a more complex situation, with mortality rates for overall cardiovascular disease, including coronary heart disease and stroke, decelerating, whereas those for heart failure are increasing. To mark the 40th anniversary of the Bethesda Conference, the National Heart, Lung, and Blood Institute and the American Heart Association cosponsored the "Bending the Curve in Cardiovascular Disease Mortality: Bethesda + 40" symposium. The objective was to examine the immediate and long-term outcomes of the 1978 conference and understand the current environment. Symposium themes included trends and future projections in cardiovascular disease (in the United States and internationally), the evolving obesity and diabetes epidemics, and harnessing emerging and innovative opportunities to preserve and promote cardiovascular health and prevent cardiovascular disease. In addition, participant-led discussion explored the challenges and barriers in promoting cardiovascular health across the lifespan and established a potential framework for observational research and interventions that would begin in early childhood (or ideally in utero). This report summarizes the relevant research, policy, and practice opportunities discussed at the symposium

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Measurement of Mass and Width of the W Boson at LEP

    Get PDF
    We report on measurements of the mass and total decay width of the W boson with the L3 detector at LEP. W-pair events produced in e+e−\mathrm{e^+e^-} interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 76.7 pb−1^{-1}. Combining all final states in W-pair production, the mass and total decay width of the W boson are determined to be MW=80.61±0.15\mathrm{M_W}=80.61\pm0.15 GeV and ΓW=1.97±0.38\Gamma_{\mathrm{W}}=1.97\pm0.38 GeV, respectively

    Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031~GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10~GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments ∫01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) {\rm d}x = 0.77 \pm 0.10 \pm 0.08, ∫01Δdv(x)dx=−0.52±0.14±0.09\int_0^1 \Delta d_v(x) {\rm d}x = -0.52 \pm 0.14 \pm 0.09 and ∫01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) {\rm d}x= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions ∫01xΔqv(x)dx\int_0^1 x \Delta q_v(x) {\rm d}x.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments ∫01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, ∫01Δdv(x)dx=−0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and ∫01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions ∫01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments ∫01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, ∫01Δdv(x)dx=−0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and ∫01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions ∫01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments ∫01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, ∫01Δdv(x)dx=−0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and ∫01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions ∫01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments ∫01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, ∫01Δdv(x)dx=−0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and ∫01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions ∫01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0031 GeV 2 . Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q 2 =10 GeV 2 . The polarised u valence quark distribution, Δu v ( x ), is positive and the polarisation increases with x . The polarised d valence quark distribution, Δd v ( x ), is negative and the non-strange sea distribution, Δ q ̄ (x) , is consistent with zero over the measured range of x . We find for the first moments ∫ 0 1 Δu v (x) d x=0.77±0.10±0.08 , ∫ 0 1 Δd v (x) d x=−0.52±0.14±0.09 and ∫ 0 1 Δ q ̄ (x) d x=0.01±0.04±0.03 , where we assumed Δ u ̄ (x)=Δ d ̄ (x) . We also determine for the first time the second moments of the valence distributions ∫ 0 1 xΔq v (x) d x

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    • 

    corecore