74 research outputs found

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    Magnetic Quantum Phase Transitions in Kondo Lattices

    Full text link
    The identification of magnetic quantum critical points in heavy fermion metals has provided an ideal setting for experimentally studying quantum criticality. Motivated by these experiments, considerable theoretical efforts have recently been devoted to reexamine the interplay between Kondo screening and magnetic interactions in Kondo lattice systems. A local quantum critical picture has emerged, in which magnetic interactions suppress Kondo screening precisely at the magnetic quantum critical point (QCP). The Fermi surface undergoes a large reconstruction across the QCP and the coherence scale of the Kondo lattice vanishes at the QCP. The dynamical spin susceptibility exhibits ω/T\omega/T scaling and non-trivial exponents describe the temperature and frequency dependence of various physical quantities. These properties are to be contrasted with the conventional spin-density-wave (SDW) picture, in which the Kondo screening is not suppressed at the QCP and the Fermi surface evolves smoothly across the phase transition. In this article we discuss recent microscopic studies of Kondo lattices within an extended dynamical mean field theory (EDMFT). We summarize the earlier work based on an analytical ϵ\epsilon-expansion renormalization group method, and expand on the more recent numerical results. We also discuss the issues that have been raised concerning the magnetic phase diagram. We show that the zero-temperature magnetic transition is second order when double counting of the RKKY interactions is avoided in EDMFT.Comment: 10 pages, 4 figures; references added; as published in JPCM in early September, except for the correction to the legend for Figure

    From mixed valence to the Kondo lattice regime

    Full text link
    Many heavy fermion materials are known to crossover from the Kondo lattice regime to the mixed-valent regime or vice-versa as a function of pressure or doping. We study this crossover theoretically by employing the periodic Anderson model within the framework of the dynamical mean field theory. Changes occurring in the dynamics and transport across this crossover are highlighted. As the valence is decreased (increased) relative to the Kondo lattice regime, the Kondo resonance broadens significantly, while the lower (upper) Hubbard band moves closer to the Fermi level. The resistivity develops a two peak structure in the mixed valent regime: a low temperature coherence peak and a high temperature 'Hubbard band' peak. These two peaks merge yielding a broad shallow maximum upon decreasing the valence further. The optical conductivity, likewise exhibits an unusual absorption feature (shoulder) in the deep mid-infrared region, which grows in intensity with decreasing valence. The involvement of the Hubbard bands in dc transport, and of the effective f-level in the optical conductivity are shown to be responsible for the anomalous transport properties. A two-band hybridization-gap model, which neglects incoherent effects due to many-body scattering, commonly employed to understand the optical response in these materials is shown to be inadequate, especially in the mixed-valent regime. Comparison of theory with experiment carried out for (a) dc resistivities of CeRhIn5, Ce2Ni3Si5, CeFeGe3 and YbIr2Si2; (b) pressure dependent resistivity of YbInAu2 and CeCu6; and (c) optical conductivity measurements in YbIr2Si2 yields excellent agreement.Comment: 24 pages,12 figures,accepted in J.Phys.: Condens. Matte

    The numerical renormalization group method for quantum impurity systems

    Full text link
    In the beginning of the 1970's, Wilson developed the concept of a fully non-perturbative renormalization group transformation. Applied to the Kondo problem, this numerical renormalization group method (NRG) gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG has been later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method including some guidelines of how to calculate physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore