68 research outputs found

    A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study

    Get PDF
    COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration, and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients

    Measuring the capability to raise revenue process and output dimensions and their application to the Zambia revenue authority

    Get PDF
    The worldwide diffusion of the good governance agenda and new public management has triggered a renewed focus on state capability and, more specifically, on the capability to raise revenue in developing countries. However, the analytical tools for a comprehensive understanding of the capability to raise revenue remain underdeveloped. This article aims at filling this gap and presents a model consisting of the three process dimensions ‘information collection and processing’, ‘merit orientation’ and ‘administrative accountability’. ‘Revenue performance’ constitutes the fourth capability dimension which assesses tax administration’s output. This model is applied to the case of the Zambia Revenue Authority. The dimensions prove to be valuable not only for assessing the how much but also the how of collecting taxes. They can be a useful tool for future comparative analyses of tax administrations’ capabilities in developing countries.Die weltweite Verbreitung der Good-Governance- und New-Public-Management-Konzepte hat zu einer zunehmenden Konzentration auf staatliche Leistungsfähigkeit und, im Besonderen, auf die Leistungsfähigkeit der Steuererhebung in Entwicklungsländern geführt. Allerdings bleiben die analytischen Werkzeuge für ein umfassendes Verständnis von Leistungsfähigkeit unterentwickelt. Dieser Artikel stellt hierfür ein Modell vor, das die drei Prozess-Dimensionen „Sammeln und Verarbeiten von Informationen“, „Leistungsorientierung der Mitarbeiter“ und „Verantwortlichkeit der Verwaltung“ beinhaltet. „Einnahmeperformanz“ ist die vierte Dimension und erfasst den Output der Steuerverwaltung. Das mehrdimensionale Modell wird für die Analyse der Leistungsfähigkeit der Steuerbehörde Zambias (Zambia Revenue Authority) genutzt. Es erweist sich nicht nur für die Untersuchung des Wieviel, sondern auch des Wie des Erhebens von Steuern als wertvoll. Die vier Dimensionen können in Zukunft zur umfassenden und vergleichenden Analyse der Leistungsfähigkeit verschiedener Steuerverwaltungen in Entwicklungsländern genutzt werden

    Woman-Centered Design through Humanity, Activism, and Inclusion

    Get PDF
    Women account for over half of the global population, however, continue to be subject to systematic and systemic disadvantage, particularly in terms of access to health and education. At every intersection, where systemic inequality accounts for greater loss of life or limitations on full and healthy living, women are more greatly impacted by those inequalities. The design of technologies is no different, the very definition of technology is historically cast in terms of male activities, and advancements in the field are critical to improve women's quality of life. This article views HCI, a relatively new field, as well positioned to act critically in the ways that technology serve, refigure, and redefine women's bodies. Indeed, the female body remains a contested topic, a restriction to the development of women's health. On one hand, the field of women's health has attended to the medicalization of the body and therefore is to be understood through medical language and knowledge. On the other hand, the framing of issues associated with women's health and people's experiences of and within such system(s) remain problematic for many. This is visible today in, e.g., socio-cultural practices in disparate geographies or medical devices within a clinic or the home. Moreover, the biological body is part of a great unmentionable, i.e., the perils of essentialism. We contend that it is necessary, pragmatically and ethically, for HCI to turn its attention toward a woman-centered design approach. While previous research has argued for the dangers of gender-demarcated design work, we advance that designing for and with women should not be regarded as ghettoizing, but instead as critical to improving women's experiences in bodily transactions, choices, rights, and access to and in health and care. In this article, we consider how and why designing with and for woman matters. We use our design-led research as a way to speak to and illustrate alternatives to designing for and with women within HCI.QC 20200930</p

    Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype

    Genetic improvement of tomato by targeted control of fruit softening

    Get PDF
    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase

    The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Get PDF
    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.This work was supported by the following grants: NHGRIU54HG003273 to R.A.G; EU Marie Curie ITN #215781 “Evonet” to M.A.; a Wellcome Trust Value in People (VIP) award to C.B. and Wellcome Trust graduate studentship WT089615MA to J.E.G; Marine rhythms of Life” of the University of Vienna, an FWF (http://www.fwf.ac.at/) START award (#AY0041321) and HFSP (http://www.hfsp.org/) research grant (#RGY0082/2010) to KT-­‐R; MFPL Vienna International PostDoctoral Program for Molecular Life Sciences (funded by Austrian Ministry of Science and Research and City of Vienna, Cultural Department -­‐Science and Research to T.K; Direct Grant (4053034) of the Chinese University of Hong Kong to J.H.L.H.; NHGRI HG004164 to G.M.; Danish Research Agency (FNU), Carlsberg Foundation, and Lundbeck Foundation to C.J.P.G.; U.S. National Institutes of Health R01AI55624 to J.H.W.; Royal Society University Research fellowship to F.M.J.; P.D.E. was supported by the BBSRC via the Babraham Institute;This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pbio.100200

    A novel haemocytometric covid-19 prognostic score developed and validated in an observational multicentre european hospital-based study

    Get PDF
    COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    corecore