11 research outputs found

    Interaction argiles-polluants métalliques dans le cadre des centres de stockage de déchets: Expériences d'infiltration sous pression et en batch d'une smectite de référence SWy-2 avec des solutions de zinc

    Get PDF
    International audienceLe stockage des déchets ménagers et assimilés est devenu un enjeu important pour l'environnement. La réglementation exige la présence d'une barrière de sécurité avec une étanchéité optimale afin d'éviter la contamination du sous-sol. Les smectites, ayant une faible perméabilité et une forte capacité à retenir les polluants, sont donc fréquemment utilisées comme barrière de sécurité passive au fond des alvéoles de stockage. Cependant ces argiles doivent assurer la pérennité de ces barrières en contact avec le lixiviat et particulièrement avec les polluants métalliques qu'il contient. Ce travail consiste à simuler au laboratoire l'infiltration des solutions de polluants métalliques dans les argiles, d'analyser les mécanismes d'interaction et donc de prévoir le comportement hydraulique et physico-chimique de ces argiles. Pour cela, nous utilisons la smectite naturelle de référence SWy2 échangée avec Na+ ou Ca2+ notée Na-SWy2 ou Ca-SWy2. Les échantillons d'argile Na-SWy2 et Ca-SWy2 ont été compactés dans des cellules oedométriques jusqu'à 0,5 MPa, puis infiltrés à une pression constante de 0,3 MPa avec de l'eau pure. La conductivité hydraulique, calculée à partir des volumes injectés et de la loi de Darcy, est très faible, de l'ordre de 10-13 m/s pour les deux types d'argiles, preuve de l'importante étanchéité de cette argile. En complément de ces expériences oedométriques de longue durée (plusieurs mois), des expériences en batch où l'équilibre est atteint rapidement permettent de tester les principaux paramètres qui influent sur les mécanismes d'adsorption. Des essais ont été menés sur Na-SWy2 avec des solutions de Zn(NO3)2 tamponnées à pH=5 avec un rapport solide/liquide de 10 g/L et à force ionique contrôlée mais à différentes concentrations initiales de Zn(NO3)2. La variation du taux de Zn adsorbé en fonction de sa concentration à l'équilibre dans la solution montre que l'adsorption du zinc varie avec la concentration initiale de la solution mère. 80% du zinc initialement mis en solution est adsorbé par l'argile Na-SWy2 à une concentration initiale de 10-5 mol.L-1, représentative des teneurs moyennes dans les lixiviats des centres de stockage. Plus on augmente la concentration initiale de Zn, plus le taux d'adsorption diminue jusqu'à atteindre une valeur de 15% pour la plus forte concentration initiale de 10-2 mol.L-1

    Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: Experimental approach and geochemical modelling

    Get PDF
    International audienceSmectites are usually used as a clay barrier at the bottom of subsurface waste landfills due to their low permeability and their capacity to retain pollutants. The Na- and Ca-saturated SWy2 montmorillonites were interacted with initial Zn(NO3)2 or Pb(NO3)2 concentrations ranging from 10-6 to 10-2 M with a solid/liquid ratio of 10 g L-1, and using acetic acid/acetate as buffer at pH 5 in order to reproduce a biodegradable leachate of a young landfill. These experiments revealed that Zn and Pb sorption onto Na-SWy2 is higher than onto Ca-SWy2 in the whole range of concentrations. Metal retention into both montmorillonites increases with the decrease in acetic acid/acetate concentration. The two site protolysis model with no electrostatic term (2SPNE model) was used to model these experiments. As the experimental data of Zn sorption were well fitted, this model was validated and has been improved by taking into account the metal-acetate complexation in solution. In order to validate the model for Pb sorption, new selectivity coefficients have been determined, namely log Kc(Pb-Na) = 0.5 for Na-montmorillonite and log Kc(Pb-Ca) = 0.3 for Ca-montmorillonite

    Reactivity between clays and metallic pollutants : simulation of clay barriers of waste landfills

    No full text
    Le stockage des déchets ménagers et assimilés est devenu un enjeu important pour l’environnement. Les smectites, ayant une faible perméabilité et une forte capacité à retenir les polluants, sont fréquemment utilisées comme barrière de sécurité passive au fond des alvéoles de stockage. Ce travail consiste à simuler au laboratoire l’infiltration de solutions de polluants métalliques dans des smectites, d'analyser les mécanismes d'interaction et prévoir leur comportement hydraulique et physico-chimique. Pour cela, nous utilisons des smectites naturelles de référence (SWy2 échangée avec différents cations, Na+ et Ca2+), mais aussi une smectite synthétique et des solutions de polluants métalliques (contenant essentiellement Zn et Pb). Les interactions « en batch » ont permis de tester plusieurs paramètres : rapport solide/liquide, concentration du polluant, pH…Les analyses des lixiviats ont montré que l’argile sodique adsorbe mieux les polluants que l’argile calcique et que l’adsorption est meilleure en milieu neutre. Les résultats expérimentaux ont pu être modélisés à l’aide de PHREEQC en utilisant le modèle 2SPNE. A partir des constantes d’échange et de complexation de la littérature, les simulations montrent que le modèle est en très bon accord avec les données expérimentales pour le zinc. Ces résultats ont permis d’établir de nouvelles constantes pour le plomb, et de connaitre les mécanismes d’adsorption en fonction de la concentration en équilibre de la solution métallique et du pH. Pour simuler au laboratoire le fonctionnement d’une barrière argileuse, des expériences d’infiltration sous pression ont été réalisées en oedométrie sur les smectites. Que ce soit avec l’eau déminéralisée, les solutions de polluants métalliques (Cu, Pb, Zn), ou un lixiviat synthétique, à pH libre ou fixé à 5, ces argiles ont des conductivités hydrauliques inférieures à 10-12 m.s-1 qui prouvent leurs bonnes capacités d’étanchéité.Storage of household and industrial wastes has become an important issue for the environment. Smectites, with a low permeability and a high capacity to retain pollutants, are frequently used as an engineered barrier at the bottom of landfills. The aim of this work was to simulate in the laboratory the infiltration of metallic pollutants solutions in smectites, to analyze the interaction mechanisms and to predict the hydraulic and physico-chemical behavior of these clays. Natural reference smectites (SWy2 exchanged with different cations, Na+ and Ca2+) but also a synthetic smectite were used together with metallic pollutant solutions (containing mainly Zn and Pb). Several parameters were tested in the "batch" experiments: solid/liquid ratio, pollutant concentration, pH ... Analyses of leachates showed that the sodic clay better adsorbs pollutants than the calcic clay, and the adsorption was better in the neutral medium than in acidic conditions (pH 5). The experimental results were then modeled using the PHREEQC code and the 2SPNE model. From the exchange and complexation constants of the literature, simulations showed that the model was in very good agreement with the experimental data for zinc. These results allowed to establish new thermodynamic constants for lead and to assess the adsorption mechanisms as a function of the equilibrium concentration of the metallic solution and the pH. To simulate a clay barrier at the laboratory scale, infiltration experiments under pressure were performed onto smectites within oedometer cells. Whether with deionised water, metallic pollutant solutions (Cu, Pb, Zn) or a synthetic leachate, at free pH or buffered at 5, these clays kept a hydraulic conductivity less than 10-12 ms-1 which proved their good sealing properties

    Réactivité argiles-polluants métalliques : simulation des barrières argileuses des sites de stockage des déchets

    No full text
    Storage of household and industrial wastes has become an important issue for the environment. Smectites, with a low permeability and a high capacity to retain pollutants, are frequently used as an engineered barrier at the bottom of landfills. The aim of this work was to simulate in the laboratory the infiltration of metallic pollutants solutions in smectites, to analyze the interaction mechanisms and to predict the hydraulic and physico-chemical behavior of these clays. Natural reference smectites (SWy2 exchanged with different cations, Na+ and Ca2+) but also a synthetic smectite were used together with metallic pollutant solutions (containing mainly Zn and Pb). Several parameters were tested in the "batch" experiments: solid/liquid ratio, pollutant concentration, pH ... Analyses of leachates showed that the sodic clay better adsorbs pollutants than the calcic clay, and the adsorption was better in the neutral medium than in acidic conditions (pH 5). The experimental results were then modeled using the PHREEQC code and the 2SPNE model. From the exchange and complexation constants of the literature, simulations showed that the model was in very good agreement with the experimental data for zinc. These results allowed to establish new thermodynamic constants for lead and to assess the adsorption mechanisms as a function of the equilibrium concentration of the metallic solution and the pH. To simulate a clay barrier at the laboratory scale, infiltration experiments under pressure were performed onto smectites within oedometer cells. Whether with deionised water, metallic pollutant solutions (Cu, Pb, Zn) or a synthetic leachate, at free pH or buffered at 5, these clays kept a hydraulic conductivity less than 10-12 ms-1 which proved their good sealing properties.Le stockage des déchets ménagers et assimilés est devenu un enjeu important pour l’environnement. Les smectites, ayant une faible perméabilité et une forte capacité à retenir les polluants, sont fréquemment utilisées comme barrière de sécurité passive au fond des alvéoles de stockage. Ce travail consiste à simuler au laboratoire l’infiltration de solutions de polluants métalliques dans des smectites, d'analyser les mécanismes d'interaction et prévoir leur comportement hydraulique et physico-chimique. Pour cela, nous utilisons des smectites naturelles de référence (SWy2 échangée avec différents cations, Na+ et Ca2+), mais aussi une smectite synthétique et des solutions de polluants métalliques (contenant essentiellement Zn et Pb). Les interactions « en batch » ont permis de tester plusieurs paramètres : rapport solide/liquide, concentration du polluant, pH…Les analyses des lixiviats ont montré que l’argile sodique adsorbe mieux les polluants que l’argile calcique et que l’adsorption est meilleure en milieu neutre. Les résultats expérimentaux ont pu être modélisés à l’aide de PHREEQC en utilisant le modèle 2SPNE. A partir des constantes d’échange et de complexation de la littérature, les simulations montrent que le modèle est en très bon accord avec les données expérimentales pour le zinc. Ces résultats ont permis d’établir de nouvelles constantes pour le plomb, et de connaitre les mécanismes d’adsorption en fonction de la concentration en équilibre de la solution métallique et du pH. Pour simuler au laboratoire le fonctionnement d’une barrière argileuse, des expériences d’infiltration sous pression ont été réalisées en oedométrie sur les smectites. Que ce soit avec l’eau déminéralisée, les solutions de polluants métalliques (Cu, Pb, Zn), ou un lixiviat synthétique, à pH libre ou fixé à 5, ces argiles ont des conductivités hydrauliques inférieures à 10-12 m.s-1 qui prouvent leurs bonnes capacités d’étanchéité

    Interaction of a synthesized Na-montmorillonite compacted and percolated with pollutants (Pb, Zn): application to subsurface waste landfill

    No full text
    International audienceDue to their low permeability and their capacity to retain pollutants, smectites are of great importance for industrial applications, in particular as engineered barrier in landfills. One of the main challenges is to predict the long-term behaviour of these clays, especially the evolution of their properties at different scales depending on interactions with pollutant metals. The originality of this study was to reproduce at a laboratory scale the in-situ compaction of clays soaked by metallic solutions coupled with the use of synthesized smectites whose chemical composition and charge location could be fixed. For this purpose, hydrothermal syntheses were carried out at 350°C and 120 MPa for 28 days, using the gelling method of Hamilton (1968) (Lantenois et al., 2008). As expected, the synthesized product contained one well-crystallized dioctahedral smectite phase (montmorillonite), as shown by X-ray diffraction, and had the following structural formulae, confirmed by ICP-ES and microprobe analyses: Na0.66[Al3.34Mg0.66][Si8]O20(OH)4.nH2O. Percolation experiments were performed with œdometer cells equipped with an injection system (Jullien et al., 2002). Clay samples were compacted up to 0.5 MPa then percolated under a constant pressure of 0.3 MPa, either with water or with metallic (Zn2+ or Pb2+) nitrate solutions at 2.10-3 mol/L. The hydraulic conductivity, k, was calculated from the measured injected volume and using the Darcy’s law. Low k values in the order of 10-12 m/s were obtained, either with water or with Pb2+ or Zn2+ solutions. After a percolation of nine months, neither Pb2+ nor Zn2+ was detected in leachates, which show their total retention in the compacted montmorillonite. Moreover, the measured Na+ contents in leachates coupled with the geochemical modelling (Phreeqc2) highlight the cationic exchange as the main mechanism for this pollutant retention. At the end of these percolation experiments, the compacted clay samples will be investigated along a vertical profile by using X-ray diffraction, scanning and transmission electron microscopy, and electron microprobe.Hamilton D.L., Henderson C.M.B. (1968). The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832-838.Jullien A., Proust C., Le Forestier L., Baillif P. (2002). Hydro-chemio-mechanical coupling effects on permeability and swelling behaviour of a Ca smectite soaked by Cu solutions. Applied Clay Science, 21, 143-153.Lantenois S., Champallier R., Bény J.M., Muller F. (2008). Hydrothermal synthesis and characterization of dioctahedral smectites: A montmorillonites series. Applied Clay Science, 38, 165-178
    corecore