13 research outputs found

    Changes in Inflammatory Response after Endovascular Treatment for Type B Aortic Dissection

    Get PDF
    This present study aims to investigate the changes in the inflammatory markers after elective endovascular treatment of Type B aortic dissection with aneurysm, as related to different anatomical features of the dissection flap in the paravisceral perfusion. Consecutive patients with type B aortic dissections with elective endovascular stent graft repair were recruited and categorized into different groups. Serial plasma levels of cytokines (Interleukin-1β, -6, -8, -10, TNF-α), chemokines (MCP-1), and serum creatinine were monitored at pre-, peri- and post-operative stages. The length of stent graft employed in each surgery was retrieved and correlated with the change of all studied biochemical parameters. A control group of aortic dissected patients with conventional medication management was recruited for comparing the baseline biochemical parameters. In total, 22 endovascular treated and 16 aortic dissected patients with surveillance were recruited. The endovascular treated patients had comparable baseline levels as the non-surgical patients. There was no immediate or thirty day-mortality, and none of the surgical patients developed post-operative mesenteric ischaemia or clinically significant renal impairment. All surgical patients had detectable pro-inflammatory mediators, but none of the them showed any statistical significant surge in the peri-operative period except IL-1β and IL-6. Similar results were obtained when categorized into different groups. IL-1β and IL-6 showed maximal levels within hours of the endovascular procedure (range, 3.93 to 27.3 higher than baseline; p = 0.001), but returned to baseline 1 day post-operatively. The change of IL-1β and IL-6 at the stent graft deployment was statistically greater in longer stent graft (p>0.05). No significant changes were observed in the serum creatinine levels. In conclusion, elective endovascular repair of type B aortic dissection associated with insignificant changes in inflammatory mediators and creatinine. All levels fell toward basal levels post-operatively suggesting that thoracic endovascular aortic repair is rather less aggressive with insignificant inflammatory modulation

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Facile Microwave Process in Water for the Fabrication of Magnetic Nanorods

    No full text
    1 - ArticleMagnetic nanorods were successfully prepared in water by a simple and fast method through microwave (MW) assisted reduction using akaganeite beta-FeOOH nanorods and hydrazine as precursors and reductor, respectively. Elongated paramagnetic akaganeite precursors are synthesized for the first time using dopamine as green chemical shape-control agent. The nature and the growth mechanism are identified by XRD, Raman spectroscopy and HRTEM analysis. Fast MW reduction process induces a structural and magnetic change depending on MW irradiation cycles. After 2 min, MW reduction leads to iron oxide nanorods with aspect ratio 3.2. XRD and Raman spectroscopy indicate a heterogeneous composition with high proportion of maghemite. The FMR spectrum is characteristic of shape anisotropy and weak ferromagnetic behavior is observed from SQUID measurements

    Therapeutics targeting tumor immune escape: Towards the development of new generation anticancer vaccines

    No full text
    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation
    corecore